TY - CHAP A1 - Engel, Tilman A1 - Müller, Juliane A1 - Müller, Steffen A1 - Reschke, Antje A1 - Kopinski, Stephan A1 - Mayer, Frank T1 - Validity and reliability of a new customised split-belt treadmill provoking unexpected walking perturbations T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2013 SN - 0195-9131 SN - 1530-0315 VL - 45 IS - 5 SP - 462 EP - 462 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Engel, Tilman A1 - Mueller, Juliane A1 - Kopinski, Stephan A1 - Reschke, Antje A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Unexpected walking perturbations: Reliability and validity of a new treadmill protocol to provoke muscular reflex activities at lower extremities and the trunk JF - Journal of biomechanics N2 - Instrumented treadmills offer the potential to generate standardized walking perturbations, which are particularly rapid and powerful. However, technical requirements to release adequate perturbations regarding timing, duration and amplitude are demanding. This study investigated the test-retest reliability and validity of a new treadmill perturbation protocol releasing rapid and unexpected belt perturbations to provoke muscular reflex responses at lower extremities and the trunk. Fourteen healthy participants underwent two identical treadmill walking protocols, consisting of 10 superimposed one-sided belt perturbations (100 ms duration; 2 m/s amplitude), triggered by a plantar pressure insole 200 ms after heel contact. Delay, duration and amplitude of applied perturbations were recorded by 3D-motion capture. Muscular reflex responses (within 200 ms) were measured at lower extremities and the trunk (10-lead EMG). Data was analyzed descriptively (mean +/- SD). Reliability was analyzed using test-retest variability (TRV%) and limits of agreement (LoA, bias +/- 1.96*SD). Perturbation delay was 202 14 ms, duration was 102 +/- 4 ms and amplitude was 2.1 +/- 0.01 m/s. TRV for perturbation delay, duration and amplitude ranged from 5.0% to 5.7%. LoA reached 3 +/- 36 ms for delay, 2 +/- 13 ms for duration and 0.0 +/- 0.3 m/s for amplitude. EMG amplitudes following perturbations ranged between 106 +/- 97% and 909 +/- 979% of unperturbed gait and EMG latencies between 82 +/- 14 ms and 106 +/- 16 ms. Minor differences between preset and observed perturbation characteristics and results of test-retest analysis prove a high validity with excellent reliability of the setup. Therefore, the protocol tested can be recommended to provoke muscular reflex responses at lower extremities and the trunk in perturbed walking. (C) 2017 Elsevier Ltd. All rights reserved. KW - Perturbation KW - Stumbling KW - Gait KW - Treadmill KW - Reliability KW - MiSpEx Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiomech.2017.02.026 SN - 0021-9290 SN - 1873-2380 VL - 55 SP - 152 EP - 155 PB - Elsevier CY - Oxford ER - TY - CHAP A1 - Reschke, Antje A1 - Müller, Juliane A1 - Müller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Three-dimensional spine kinematics during perturbed treadmill walking - a pilot study T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2013 SN - 0195-9131 SN - 1530-0315 VL - 45 IS - 5 SP - 172 EP - 172 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Engel, Tilman A1 - Reschke, Antje A1 - Baur, Heiner A1 - Mayer, Frank T1 - Stumbling reactions during perturbed walking: Neuromuscular reflex activity and 3-D kinematics of the trunk - A pilot study JF - Journal of biomechanics N2 - Stumbling led to an increase in ROM, compared to unperturbed gait, in all segments and planes. These increases ranged between 107 +/- 26% (UTA/rotation) and 262 +/- 132% (UTS/lateral flexion), significant only in lateral flexion. EMG activity of the trunk was increased during stumbling (abdominal: 665 +/- 283%; back: 501 +/- 215%), without significant differences between muscles. Provoked stumbling leads to a measurable effect on the trunk, quantifiable by an increase in ROM and EMG activity, compared to normal walking. Greater abdominal muscle activity and ROM of lateral flexion may indicate a specific compensation pattern occurring during stumbling. (C) 2015 Elsevier Ltd. All rights reserved. KW - Trunk kinematics KW - Treadmill walking KW - Gait perturbation KW - EMG Y1 - 2016 U6 - https://doi.org/10.1016/j.jbiomech.2015.09.041 SN - 0021-9290 SN - 1873-2380 VL - 49 SP - 933 EP - 938 PB - Elsevier CY - Oxford ER -