TY - JOUR A1 - Landgraf, Angela A1 - Zielke, Olaf A1 - Arrowsmith, J. Ramón A1 - Ballato, Paolo A1 - Strecker, Manfred A1 - Schildgen, Taylor F. A1 - Friedrich, Anke M. A1 - Tabatabaei, Sayyed-Hassan T1 - Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran JF - Journal of geophysical research : Earth surface N2 - The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a simple to a composite state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex. KW - fault interaction KW - landscape evolution KW - numerical modeling KW - Alborz Mountains KW - Iran Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20109 SN - 2169-9003 SN - 2169-9011 VL - 118 IS - 3 SP - 1792 EP - 1805 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Landgraf, Angela T1 - Fault interaction at different time- and length scales : the North Tehran thrust and Mosha-Fasham fault (Alborz mountains, Iran) T1 - Störungsinteraktion auf verschiedenen räumlichen und zeitlichen Skalen : die Nord-Teheran Überschiebung und die Mosha-Fasham Störung, Elburs Gebirge, Iran N2 - The seismically active Alborz mountains of northern Iran are an integral part of the Arabia-Eurasia collision. Linked strike-slip and thrust/reverse-fault systems in this mountain belt are characterized by slow loading rates, and large earthquakes are highly disparate in space and time. Similar to other intracontinental deformation zones such a pattern of tectonic activity is still insufficiently understood, because recurrence intervals between seismic events may be on the order of thousands of years, and are thus beyond the resolution of short term measurements based on GPS or instrumentally recorded seismicity. This study bridges the gap of deformation processes on different time scales. In particular, my investigation focuses on deformation on the Quaternary time scale, beyond present-day deformation rates, and it uses present-day and paleotectonic characteristics to model fault behavior. The study includes data based on structural and geomorphic mapping, faultkinematic analysis, DEM-based morphometry, and numerical fault-interaction modeling. In order to better understand the long- to short term behavior of such complex fault systems, I used geomorphic surfaces as strain markers and dated fluvial and alluvial surfaces using terrestrial cosmogenic nuclides (TCN, 10Be, 26Al, 36Cl) and optically stimulated luminescence (OSL). My investigation focuses on the seismically active Mosha-Fasham fault (MFF) and the seismically virtually inactive North Tehran Thrust (NTT), adjacent to the Tehran metropolitan area. Fault-kinematic data reveal an early mechanical linkage of the NTT and MFF during an earlier dextral transpressional stage, when the shortening direction was oriented northwest. This regime was superseded by Pliocene to Recent NE-oriented shortening, which caused thrusting and sinistral strike-slip faulting. In the course of this kinematic changeover, the NTT and MFF were reactivated and incorporated into a nascent transpressional duplex, which has significantly affected landscape evolution in this part of the range. Two of three distinctive features which characterize topography and relief in the study area can be directly related to their location inside the duplex array and are thus linked to interaction between eastern MFF and NTT, and between western MFF and Taleghan fault, respectively. To account for inferred inherited topography from the previous dextral-transpression regime, a new concept of tectonic landscape characterization has been used. Accordingly, I define simple landscapes as those environments, which have developed during the influence of a sustained tectonic regime. In contrast, composite landscapes contain topographic elements inherited from previous tectonic conditions that are inconsistent with the regional present-day stress field and kinematic style. Using numerical fault-interaction modeling with different tectonic boundary conditions, I calculated synoptic snapshots of artificial topography to compare it with the real topographic metrics. However, in the Alborz mountains, E-W faults are favorably oriented to accommodate the entire range of NW- to NE-directed compression. These faults show the highest total displacement which might indicate sustained faulting under changing boundary conditions. In contrast to the fault system within and at the flanks of the Alborz mountains, Quaternary deformation in the adjacent Tehran plain is characterized by oblique motion and thrust and strike-slip fault systems. In this morphotectonic province fault-propagation folding along major faults, limited strike-slip motion, and en-échelon arrays of second-order upper plate thrusts are typical. While the Tehran plain is characterized by young deformation phenomena, the majority of faulting took place in the early stages of the Quaternary and during late Pliocene time. TCN-dating, which was performed for the first time on geomorphic surfaces in the Tehran plain, revealed that the oldest two phases of alluviation (units A and B) must be older than late Pleistocene. While urban development in Tehran increasingly covers and obliterates the active fault traces, the present-day kinematic style, the vestiges of formerly undeformed Quaternary landforms, and paleo earthquake indicators from the last millennia attest to the threat that these faults and their related structures pose for the megacity. N2 - Das seismisch aktive Elburs Gebirge im Nordiran ist Bestandteil der Arabisch-Eurasischen Kollisionszone. Gekoppelte Blattverschiebungs- und Überschiebungssysteme dieses Gebirges zeichnen sich durch geringe Spannungsaufbauraten aus. Dementsprechend treten große Erdbeben räumlich und zeitlich weit verteilt voneinander auf und Wiederkehrperioden solcher Erdbeben können tausende von Jahren dauern und wurden noch nicht von kurzzeitigen Messmethoden, wie GPS oder instrumenteller Seismologie erfasst. Diese Arbeit überbrückt verschiedene Zeitskalen. Diese Studie beinhaltet insbesondere Auswertungen struktureller und geomorphologischer Kartierungen, störungskinematische Analysen, auf digitalen Höhenmodellen basierende Morphometrie und numerische Modellierung von Störungsinteraktion. Um das lang- und kurzfristige Verhalten solcher komplexen Schwächezonen besser zu verstehen, benutze ich geomorphologische Oberflächen als Deformationsmarker und datiere alluviale und fluviatile Oberflächen mittels kosmogener Nuklide (TCN, 10Be, 26Al, 36Cl) und optisch stimulierter Lumineszenz (OSL). Mein Untersuchungsgebiet umfasst die seismisch aktive Mosha-Fasham Störung (MFF) und die als seismisch quasi inaktiv geltende Nordteheranstörung (NTT), die sich in unmittelbarer Nähe zum Teheraner Ballungsgebiet befinden. Die Ergebnisse zeigen, dass sich das Deformationfeld mit der Zeit verändert hat. Die störungskinematischen Daten haben ergeben, dass NTT und MFF bereits seit einer früheren dextral-transpressionalen Phase unter NW-gerichteter Einengung mechanisch gekoppelt sind. Dieses System wurde von pliozäner und bis heute andauernder NE-gerichteter Einengung ersetzt, woraufhin sich Überschiebungen und linkslaterale Blattverschiebungen herausbildeten. Während dieses kinematischen Wechsels wurden NTT und MFF reaktiviert und in ein beginnendes transpressionales Duplexsystem eingebunden, welches die Landschaftentwicklung in diesem Teil des Gebirges signifikant beeinflusst hat. Zwei von drei ausgeprägten topographischen Besonderheiten des Untersuchungsgebietes können direkt mit deren Lage in der Duplexanordnung in Verbindung gebracht werden und spiegeln Interaktion zwischen den östlichen Segmenten von NTT und MFF, bzw., zwischen dem westlichen Segment der MFF und der parallelen Taleghan Schwächezone wider. Um diejenige Topographie auszuweisen, die möglicherweise aus der vorhergehenden Phase vererbt wurde, wurde ein neues Konzept tektonischer Landschaftscharakterisierung benutzt. Einfache Landschaften sind unter dem Einfluß gleichbleibender tektonischer Randbedingungen entstanden. Dagegen enthalten zusammengesetzte Landschaften vererbte Elemente vergangener tektonischer Randbedingungen, die mit dem heutigen Spannungsfeld und kinematischen Stil unvereinbar sind. Mittels numerischer Störungsinteraktionsmodellierungen teste ich verschiedene Randbedingungen und berechne synoptische Momentaufnahmen künstlicher Topographie um sie mit reellen topographischen Maßen zu vergleichen. Im Elburs Gebirge treten allerdings auch E-W streichende Schwächezonen auf, die so günstig orientiert sind, dass sie Verformung unter der gesamten Einengungsspanne von Nordwest nach Nordost zeigen. Diese weisen den höchsten totalen Versatz auf. Hier tritt das Grundgebirge zutage und wird versetzt, was, wie die Modellierungen vermuten lassen, auf langanhaltende Verformung unter sich ändernden Randbedingungen hinweisen kann. Quartäre Deformation in der benachbarten Teheran Ebene ist durch Schrägbewegungen, Überschiebungen und Blattverschiebungssyteme gekennzeichnet, die typischerweise in Auffaltungen entlang von Hauptstörungen, vereinzelten Blattverschiebungen und en-échelon Anordnungen untergeordneter oberflächlicher Überschiebungen resultieren. Junge Deformation tritt auf, die Hauptbewegungen fanden allerdings im frühen Quartär und wahrscheinlich späten Pliozän statt. TCN-Datierungen, die erstmalig an geomorphologischen Oberflächen in der Teheran Ebene durchgeführt wurden, ergeben dass die beiden älteren Sedimentationsphasen (Einheiten A und B) älter sind als spätes Pleistozän. Obwohl die urbane Entwicklung im Teheraner Ballungsraum die aktiven Störungslinien zunehmend verdeckt und ausradiert, zeugen der heutige kinematische Stil, die Überreste ehemals unverstellter Quartärer Landschaftsformen und Hinweise auf Paläoerdbeben während der letzten Jahrtausende von der Gefahr, die diese Schwächezonen für die Megastadt bedeuten. KW - Störungsinteraktion KW - Tektonische Geomorphologie KW - Kosmogene Nuklide KW - Elburs KW - Iran KW - Fault interaction KW - Tectonic geomorphology KW - Cosmogenic nuclides KW - Alborz KW - Iran Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50800 ER - TY - GEN A1 - Donner, Stefanie A1 - Rößler, Dirk A1 - Strecker, Manfred A1 - Landgraf, Angela A1 - Ballato, Paolo T1 - Erweiterte Momententensorinversion und ihre seismotektonische Anwendung : Elbursgebirge, Nordiran T1 - Extended moment tensor inversion and its seismotectonic application : Alborz Mountains, Northern Iran N2 - Der Elburs im Norden Irans ist ein durch die Konvergenz der Arabischen und Eurasischen Platte verursachtes doppelt konvergentes Gebirge. Das komplexe System von Blattverschiebungen und Überschiebungen sowie die Aufnahme der Deformation im Elburs ist noch nicht sehr gut verstanden. Eine neu zu entwicklende Methode zur Inversion von seismischen Momententensoren, die unterschiedliche Beobachtungen verschiedener Stationstypen kombiniert invertiert, soll die bisher hauptsächlich strukturelle/geomorphologische Datengrundlage um Momententensoren auch kleinerer Magnituden (M < 4.5) erweitern. Dies ist die notwendige Grundlage für detaillierte seismotektonische Studien, die wiederum die Basis für seismische Gefährdungsanalysen bilden. KW - Momententensor KW - Iran KW - Seismotektonik KW - moment tensor KW - Iran KW - seismotectonics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29308 ER - TY - GEN A1 - Donner, Stefanie A1 - Strecker, Manfred A1 - Rößler, Dirk A1 - Ghods, Abdolreza A1 - Krüger, Frank A1 - Landgraf, Angela A1 - Ballato, Paolo T1 - Earthquake source models for earthquakes in Northern Iran N2 - The complex system of strike-slip and thrust faults in the Alborz Mountains, Northern Iran, are not well understood yet. Mainly structural and geomorphic data are available so far. As a more extensive base for seismotectonic studies and seismic hazard analysis we plan to do a comprehensive seismic moment tensor study also from smaller magnitudes (M < 4.5) by developing a new algorithm. Here, we present first preliminary results. KW - Elburs KW - Iran KW - Momententensor KW - Seismotektonik KW - Alborz KW - Iran KW - moment tensor KW - seismotectonics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-32581 ER -