TY - JOUR A1 - Koch, Arnd A1 - Popp, Andreas A1 - Steinberg, Georg T1 - Vorwort BT - Strafrecht in der alten Bundesrepublik als Gegenstand zeitgeschichtlicher Forschung JF - Strafrecht in der alten Bundesrepublik 1949-1990: Grundlagen, Allgemeiner Teil und Rechtsfolgenseite im zeitgeschichtlichen Spiegel von Gesellschaft und Politik Y1 - 2020 SN - 978-3-8487-7027-4 SN - 978-3-7089-2068-9 SN - 978-3-03891-287-3 U6 - https://doi.org/9783748910862-1 SP - 5 EP - 8 PB - Nomos CY - Baden-Baden ER - TY - JOUR A1 - Thierbach, Renè A1 - Schulz, Tim Julius A1 - Isken, Frank A1 - Voigt, Aanja A1 - Mietzner, Brun A1 - Drewes, Gunnar A1 - von Kleist-Retzow, Jürgen-Christoph A1 - Wiesner, Rudolf J. A1 - Magnuson, Mark A. A1 - Puccio, Helene A1 - Pfeiffer, Andreas F. H. A1 - Steinberg, Pablo A1 - Ristow, Michael T1 - Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice N2 - We have disrupted expression of the mitochondrial Friedreich ataxia protein frataxin specifically in murine hepatocytes to generate mice with impaired mitochondrial function and decreased oxidative phosphorylation. These animals have a reduced life span and develop multiple hepatic tumors. Livers also show increased oxidative stress, impaired respiration and reduced ATP levels paralleled by reduced activity of iron-sulfur cluster (Fe/S) containing proteins (ISP), which all leads to increased hepatocyte turnover by promoting both apoptosis and proliferation. Accordingly, phosphorylation of the stress-inducible p38 MAP kinase was found to be specifically impaired following disruption of frataxin. Taken together, these findings indicate that frataxin may act as a mitochondrial tumor suppressor protein in mammals Y1 - 2005 ER - TY - JOUR A1 - Thierbach, Rene A1 - Schulz, Tim Julius A1 - Voigt, Aanja A1 - Drewes, Gunnar A1 - Isken, F. A1 - Pfeiffer, Andreas F. H. A1 - Ristow, Michael A1 - Steinberg, Pablo T1 - Targeted disruption of frataxin in hepatocytes causes spontaneous neoplasia accompanied by increased ROS formation Y1 - 2004 SN - 0028-1298 ER - TY - JOUR A1 - Steinberg, Andreas A1 - Sudhaus, Henriette A1 - Heimann, Sebastian A1 - Krüger, Frank T1 - Sensitivity of InSAR and teleseismic observations to earthquake rupture segmentation JF - Geophysical journal international N2 - Earthquakes often rupture across more than one fault segment. If such rupture segmentation occurs on a significant scale, a simple point-source or one-fault model may not represent the rupture process well. As a consequence earthquake characteristics inferred, based on one-source assumptions, may become systematically wrong. This might have effects on follow-up analyses, for example regional stress field inversions and seismic hazard assessments. While rupture segmentation is evident for most M-w > 7 earthquakes, also smaller ones with 5.5 < M-w < 7 can be segmented. We investigate the sensitivity of globally available data sets to rupture segmentation and their resolution to reliably estimate the mechanisms in presence of segmentation. We focus on the sensitivity of InSAR (Interferometric Synthetic Aperture Radar) data in the static near-field and seismic waveforms in the far-field of the rupture and carry out non-linear and Bayesian optimizations of single-source and two-sources kinematic models (double-couple point sources and finite, rectangular sources) using InSAR and teleseismic waveforms separately. Our case studies comprises of four M-w 6-7 earthquakes: the 2009 L'Aquila and 2016 Amatrice (Italy) and the 2005 and 2008 Zhongba (Tibet) earthquakes. We contrast the data misfits of different source complexity by using the Akaike informational criterion (AIC). We find that the AIC method is well suited for data-driven inferences on significant rupture segmentation for the given data sets. This is based on our observation that an AIC-stated significant improvement of data fit for two-segment models over one-segment models correlates with significantly different mechanisms of the two source segments and their average compared to the single-segment mechanism. We attribute these modelled differences to a sufficient sensitivity of the data to resolve rupture segmentation. Our results show that near-field data are generally more sensitive to rupture segmentation of shallow earthquakes than far-field data but that also teleseismic data can resolve rupture segmentation in the studied magnitude range. We further conclude that a significant difference in the modelled source mechanisms for different segmentations shows that an appropriate choice of model segmentation matters for a robust estimation of source mechanisms. It reduces systematic biases and trade-off and thereby improves the knowledge on the rupture. Our study presents a strategy and method to detect significant rupture segmentation such that an appropriate model complexity can be used in the source mechanism inference. A similar, systematic investigation of earthquakes in the range of M-w 5.5-7 could provide important hazard-relevant statistics on rupture segmentation. In these cases single-source models introduce a systematic bias. Consideration of rupture segmentation therefore matters for a robust estimation of source mechanisms of the studied earthquakes. KW - radar interferometry KW - waveform inversion KW - earthquake source observations Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa351 SN - 0956-540X SN - 1365-246X VL - 223 IS - 2 SP - 875 EP - 907 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Schulz, Tim Julius A1 - Thierbach, Renè A1 - Voigt, Anja A1 - Drewes, Gunnar A1 - Mietzner, Brun A1 - Steinberg, Pablo A1 - Pfeiffer, Andreas F. H. A1 - Ristow, Michael T1 - Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth : Otto Warburg revisited N2 - More than 80 years ago Otto Warburg suggested that cancer might be caused by a decrease in mitochondrial energy metabolism paralleled by an increase in glycolytic flux. In later years, it was shown that cancer cells exhibit multiple alterations in mitochondrial content, structure, function, and activity. We have stably overexpressed the Friedreich ataxia-associated protein frataxin in several colon cancer cell lines. These cells have increased oxidative metabolism, as shown by concurrent increases in aconitase activity, mitochondrial membrane potential, cellular respiration, and ATP content. Consistent with Warburg's hypothesis, we found that frataxin-overexpressing cells also have decreased growth rates and increased population doubling times, show inhibited colony formation capacity in soft agar assays, and exhibit a reduced capacity for tumor formation when injected into nude mice. Furthermore, overexpression of frataxin leads to an increased phosphorylation of the tumor suppressor p38 mitogen-activated protein kinase, as well as decreased phosphorylation of extracellular signal-regulated kinase. Taken together, these results support the view that an increase in oxidative metabolism induced by mitochondrial frataxin may inhibit cancer growth in mammals Y1 - 2006 UR - http://www.jbc.org/content/281/2/977.full.pdf+html U6 - https://doi.org/10.1074/jbc.M511064200 ER - TY - JOUR A1 - Steinberg, Andreas A1 - Vasyura-Bathke, Hannes A1 - Gaebler, Peter Jost A1 - Ohrnberger, Matthias A1 - Ceranna, Lars T1 - Estimation of seismic moment tensors using variational inference machine learning JF - Journal of geophysical research : Solid earth N2 - We present an approach for rapidly estimating full moment tensors of earthquakes and their parameter uncertainties based on short time windows of recorded seismic waveform data by considering deep learning of Bayesian Neural Networks (BNNs). The individual neural networks are trained on synthetic seismic waveform data and corresponding known earthquake moment-tensor parameters. A monitoring volume has been predefined to form a three-dimensional grid of locations and to train a BNN for each grid point. Variational inference on several of these networks allows us to consider several sources of error and how they affect the estimated full moment-tensor parameters and their uncertainties. In particular, we demonstrate how estimated parameter distributions are affected by uncertainties in the earthquake centroid location in space and time as well as in the assumed Earth structure model. We apply our approach as a proof of concept on seismic waveform recordings of aftershocks of the Ridgecrest 2019 earthquake with moment magnitudes ranging from Mw 2.7 to Mw 5.5. Overall, good agreement has been achieved between inferred parameter ensembles and independently estimated parameters using classical methods. Our developed approach is fast and robust, and therefore, suitable for down-stream analyses that need rapid estimates of the source mechanism for a large number of earthquakes. KW - seismology KW - machine learning KW - earthquake source KW - moment tensor KW - full KW - waveform Y1 - 2021 U6 - https://doi.org/10.1029/2021JB022685 SN - 2169-9313 SN - 2169-9356 VL - 126 IS - 10 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Heimann, Sebastian A1 - Vasyura-Bathke, Hannes A1 - Sudhaus, Henriette A1 - Isken, Marius Paul A1 - Kriegerowski, Marius A1 - Steinberg, Andreas A1 - Dahm, Torsten T1 - A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems JF - Solid earth N2 - The computation of such synthetic GFs is computationally and operationally demanding. As a consequence, the onthe-fly recalculation of synthetic GFs in each iteration of an optimisation is time-consuming and impractical. Therefore, the pre-calculation and efficient storage of synthetic GFs on a dense grid of source to receiver combinations enables the efficient lookup and utilisation of GFs in time-critical scenarios. We present a Python-based framework and toolkit - Pyrocko-GF - that enables the pre-calculation of synthetic GF stores, which are independent of their numerical calculation method and GF transfer function. The framework aids in the creation of such GF stores by interfacing a suite of established numerical forward modelling codes in seismology (computational back ends). So far, interfaces to back ends for layered Earth model cases have been provided; however, the architecture of Pyrocko-GF is designed to cover back ends for other geometries (e.g. full 3-D heterogeneous media) and other physical quantities (e.g. gravity, pressure, tilt). Therefore, Pyrocko-GF defines an extensible GF storage format suitable for a wide range of GF types, especially handling elasticity and wave propagation problems. The framework assists with visualisations, quality control, and the exchange of GF stores, which is supported through an online platform that provides many pre-calculated GF stores for local, regional, and global studies. The Pyrocko-GF toolkit comes with a well-documented application programming interface (API) for the Python programming language to efficiently facilitate forward modelling of geophysical processes, e.g. synthetic waveforms or static displacements for a wide range of source models. Y1 - 2019 U6 - https://doi.org/10.5194/se-10-1921-2019 SN - 1869-9510 SN - 1869-9529 VL - 10 IS - 6 SP - 1921 EP - 1935 PB - Copernicus CY - Göttingen ER -