TY - JOUR A1 - Chromik, Jonas A1 - Pirl, Lukas A1 - Beilharz, Jossekin Jakob A1 - Arnrich, Bert A1 - Polze, Andreas T1 - Certainty in QRS detection with artificial neural networks JF - Biomedical signal processing and control N2 - Detection of the QRS complex is a long-standing topic in the context of electrocardiography and many algorithms build upon the knowledge of the QRS positions. Although the first solutions to this problem were proposed in the 1970s and 1980s, there is still potential for improvements. Advancements in neural network technology made in recent years also lead to the emergence of enhanced QRS detectors based on artificial neural networks. In this work, we propose a method for assessing the certainty that is in each of the detected QRS complexes, i.e. how confident the QRS detector is that there is, in fact, a QRS complex in the position where it was detected. We further show how this metric can be utilised to distinguish correctly detected QRS complexes from false detections. KW - QRS detection KW - Electrocardiography KW - Artificial neural networks KW - Machine KW - learning KW - Signal-to-noise ratio Y1 - 2021 U6 - https://doi.org/10.1016/j.bspc.2021.102628 SN - 1746-8094 SN - 1746-8108 VL - 68 PB - Elsevier CY - Oxford ER -