TY - JOUR A1 - Lau, Skadi A1 - Liu, Yue A1 - Maier, Anna A1 - Braune, Steffen A1 - Gossen, Manfred A1 - Neffe, Axel T. A1 - Lendlein, Andreas T1 - Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation JF - MRS communications / a publication of the Materials Research Society N2 - In vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials. Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00072-6 SN - 2159-6867 VL - 11 IS - 5 SP - 559 EP - 567 PB - Springer CY - Berlin ER - TY - JOUR A1 - Tung, Wing Tai A1 - Maring, Janita A. A1 - Xu, Xun A1 - Liu, Yue A1 - Becker, Matthias A1 - Somesh, Dipthi Bachamanda A1 - Klose, Kristin A1 - Wang, Weiwei A1 - Sun, Xianlei A1 - Ullah, Imran A1 - Kratz, Karl A1 - Neffe, Axel T. A1 - Stamm, Christof A1 - Ma, Nan A1 - Lendlein, Andreas T1 - In vivo performance of a cell and factor free multifunctional fiber mesh modulating postinfarct myocardial remodeling JF - Advanced Functional Materials N2 - Guidance of postinfarct myocardial remodeling processes by an epicardial patch system may alleviate the consequences of ischemic heart disease. As macrophages are highly relevant in balancing immune response and regenerative processes their suitable instruction would ensure therapeutic success. A polymeric mesh capable of attracting and instructing monocytes by purely physical cues and accelerating implant degradation at the cell/implant interface is designed. In a murine model for myocardial infarction the meshes are compared to those either coated with extracellular matrix or loaded with induced cardiomyocyte progenitor cells. All implants promote macrophage infiltration and polarization in the epicardium, which is verified by in vitro experiments. 6 weeks post-MI, especially the implantation of the mesh attenuates left ventricular adverse remodeling processes as shown by reduced infarct size (14.7% vs 28-32%) and increased wall thickness (854 mu m vs 400-600 mu m), enhanced angiogenesis/arteriogenesis (more than 50% increase compared to controls and other groups), and improved heart function (ejection fraction = 36.8% compared to 12.7-31.3%). Upscaling as well as process controls is comprehensively considered in the presented mesh fabrication scheme to warrant further progression from bench to bedside. KW - bioinstructive materials KW - cardiac regeneration KW - function by structure; KW - modulation of in vivo regeneration KW - multifunctional biomaterials Y1 - 2022 U6 - https://doi.org/10.1002/adfm.202110179 SN - 1616-301X SN - 1616-3028 VL - 32 IS - 31 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Xu, Xun A1 - Nie, Yan A1 - Wang, Weiwei A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells JF - MRS communications / a publication of the Materials Research Society N2 - Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs. KW - Actuation KW - Antiviral KW - Biomaterial KW - COVID-19 KW - Shape memory Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00049-5 SN - 2159-6867 VL - 11 IS - 4 SP - 425 EP - 431 PB - Springer CY - Berlin ER - TY - JOUR A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xua, Xun A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polymeric sheet actuators with programmable bioinstructivity JF - PNAS N2 - Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects. KW - reversible shape-memory actuator KW - mesenchymal stem cells KW - calcium influx KW - HDAC1 KW - RUNX2 Y1 - 2020 U6 - https://doi.org/10.1073/pnas.1910668117 SN - 1091-6490 VL - 117 IS - 4 SP - 1895 EP - 1901 PB - National Academy of Sciences CY - Washington, DC ER -