TY - JOUR A1 - Wang, Weiwei A1 - Kratz, Karl A1 - Behl, Marc A1 - Yan, Wan A1 - Liu, Yue A1 - Xu, Xun A1 - Baudis, Stefan A1 - Li, Zhengdong A1 - Kurtz, Andreas A1 - Lendlein, Andreas A1 - Ma, Nan T1 - The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies. KW - Polyether ether ketone KW - mesenchymal stem cells KW - biocompatibility KW - cell-material interaction KW - osteogenic differentiation Y1 - 2015 U6 - https://doi.org/10.3233/CH-152001 SN - 1386-0291 SN - 1875-8622 VL - 61 IS - 2 SP - 301 EP - 321 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Neffe, Axel T. A1 - von Rüsten-Lange, Maik A1 - Braune, Steffen A1 - Lützow, Karola A1 - Roch, Toralf A1 - Richau, Klaus A1 - Krüger, Anne A1 - Becherer, Tobias A1 - Thünemann, Andreas F. A1 - Jung, Friedrich A1 - Haag, Rainer A1 - Lendlein, Andreas T1 - Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility JF - Journal of materials chemistry : B, Materials for biology and medicine N2 - Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo-and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials. Y1 - 2014 U6 - https://doi.org/10.1039/c4tb00184b SN - 2050-750X SN - 2050-7518 VL - 2 IS - 23 SP - 3626 EP - 3635 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Neffe, Axel T. A1 - von Rüsten-Lange, Maik A1 - Braune, Steffen A1 - Lützow, Karola A1 - Roch, Toralf A1 - Richau, Klaus A1 - Krüger, Anne A1 - Becherer, Tobias A1 - Thünemann, Andreas F. A1 - Jung, Friedrich A1 - Haag, Rainer A1 - Lendlein, Andreas T1 - Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility N2 - Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo- and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 285 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99444 ER - TY - GEN A1 - Balk, Maria A1 - Grijpma, Dirk W. A1 - Lendlein, Andreas T1 - Design and processing of advanced functional polymers for medicine T2 - Polymers for advanced technologies Y1 - 2017 U6 - https://doi.org/10.1002/pat.3980 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1203 EP - 1205 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lendlein, Andreas A1 - Balk, Maria A1 - Tarazona, Natalia A. A1 - Gould, Oliver E. C. T1 - Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b01074 SN - 1525-7797 SN - 1526-4602 VL - 20 IS - 10 SP - 3627 EP - 3640 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Moradian, Hanieh A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - Strategies for simultaneous and successive delivery of RNA JF - Journal of molecular medicine N2 - Advanced non-viral gene delivery experiments often require co-delivery of multiple nucleic acids. Therefore, the availability of reliable and robust co-transfection methods and defined selection criteria for their use in, e.g., expression of multimeric proteins or mixed RNA/DNA delivery is of utmost importance. Here, we investigated different co- and successive transfection approaches, with particular focus on in vitro transcribed messenger RNA (IVT-mRNA). Expression levels and patterns of two fluorescent protein reporters were determined, using different IVT-mRNA doses, carriers, and cell types. Quantitative parameters determining the efficiency of co-delivery were analyzed for IVT-mRNAs premixed before nanocarrier formation (integrated co-transfection) and when simultaneously transfecting cells with separately formed nanocarriers (parallel co-transfection), which resulted in a much higher level of expression heterogeneity for the two reporters. Successive delivery of mRNA revealed a lower transfection efficiency in the second transfection round. All these differences proved to be more pronounced for low mRNA doses. Concurrent delivery of siRNA with mRNA also indicated the highest co-transfection efficiency for integrated method. However, the maximum efficacy was shown for successive delivery, due to the kinetically different peak output for the two discretely operating entities. Our findings provide guidance for selection of the co-delivery method best suited to accommodate experimental requirements, highlighting in particular the nucleic acid dose-response dependence on co-delivery on the single-cell level. KW - integrated co-transfection KW - parallel co-transfection KW - successive KW - transfection KW - co-expression KW - in vitro synthesized mRNA KW - transfection methods Y1 - 2020 U6 - https://doi.org/10.1007/s00109-020-01956-1 SN - 0946-2716 SN - 1432-1440 VL - 98 IS - 12 SP - 1767 EP - 1779 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Neffe, Axel T. A1 - Zhang, Quanchao A1 - Hommes-Schattmann, Paul J. A1 - Lendlein, Andreas T1 - Ethylene oxide sterilization of electrospun poly(L-lactide)/poly(D-lactide) core/shell nanofibers JF - MRS advances N2 - The application of polymers in medicine requires sterilization while retaining material structure and properties. This demands detailed analysis, which we show exemplarily for the sterilization of PLLA/PDLA core-shell nanofibers with ethylene oxide (EtO). The electrospun patch was exposed to EtO gas (6 vol% in CO2, 1.7 bar) for 3 h at 45 degrees C and 75% rel. humidity, followed by degassing under pressure/vacuum cycles for 12 h. GC-MS analysis showed that no residual EtO was retained. Fiber diameters (similar to 520 +/- 130 nm) of the patches remained constant as observed by electron microscopy. Young's modulus slightly increased and the elongation at break slightly decreased, determined at 37 degrees C. No changes were detected in H-1-NMR spectra, in molar mass distribution (GPC) or in crystallinity measured for annealed samples with comparable thermal history (Wide Angle X-Ray Scattering). Altogether, EtO emerged as suitable sterilization method for polylactide nanofibers with core-shell morphology. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00058-5 SN - 2059-8521 VL - 6 IS - 33 SP - 786 EP - 789 PB - Springer CY - Cham ER - TY - JOUR A1 - Heilmann, Katja A1 - Groth, Thomas A1 - Behrsing, Olaf A1 - Wagner, Albrecht A1 - Schossig-Tiedemann, Michael A1 - Lendlein, Andreas A1 - Micheel, Burkhard T1 - The influence of the chemical composition of cell culture material on the growth and antibody production of hybridoma cells N2 - The multiplication and antibody production of murine hybridoma cells cultured on five different polymer membranes were tested and compared with conventional tissue culture polystyrene (TCPS). Membranes were prepared from polyacrylonitrile (PAN) and acrylonitrile copolymerized with N-vinylpyrrolidone (NVP20, NVP30), Na-methallylsulfonate (NaMAS) and N-(3-amino-propyl-methacrylamide-hydrochloride) (APMA). Cell number and antibody concentration were quantified as criteria for viability and productivity. Adhesion of hybridoma cells was characterized by vital and scanning electron microscopy. The results suggest that a strong adhesion of cells, observed on APMA and TCPS, increased cell growth but reduced monoclonal antibody production. In contrast membranes with lowered adhesivity such as NVP20 provided favourable conditions for monoclonal antibody production. In addition it was shown that this membrane also possessed a minor fouling as indicated by the low decrease of water flux across the membrane after protein adsorption. It was concluded that NVP20 could be a suitable material for the development of hollow fibre membranes for bioreactors. Y1 - 2005 UR - http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3C-4DPYNGY- 4&_coverDate=02%2F09%2F2005&_alid=268995355&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4943&_sort=d&view=c&_acct=C000053886&_v e ER - TY - JOUR A1 - Feng, Y. A1 - Kelch, S. A1 - Rickert, D. A1 - Fuhrmann, R. A1 - Franke, R. P. A1 - Lendlein, Andreas T1 - Biokompatible abbaubare Formgedächtnispolymersysteme als intelligente Implantatmaterialien Y1 - 2004 ER - TY - JOUR A1 - Kelch, S. A1 - Lendlein, Andreas A1 - Schulte, J. T1 - Kunststoffe mit Formgedächtnis : die erstaunlichen Fähigkeiten intelligenter Materialien Y1 - 2004 SN - 0344-5690 ER - TY - JOUR A1 - Rickert, D A1 - Lendlein, Andreas A1 - Kelch, S A1 - Franke, R. P. A1 - Moses, M. A. T1 - Cell proliferation and cellular activity of primary cell cultures of the oral cavity after cell seeding on the surface of a degradable, thermoplastic block copolymer N2 - Using standard cell biological and biochemical methods we were able to test the ability of a degradable, thermoplastic block copolymer to support the adhesion, proliferation, and the cellular activity of primary cell cultures of the oral cavity in vitro. The delicate balance between a group of endogenous enzymes, Matrix Metalloproteinases (MMPs), and their inhibitors (Tissue Inhibitor of MMPs, TIMPs) have a decisive function in the remodeling of the extracellular matrix during processes like wound healing or the integration of biomaterials in surrounding tissues after implantation. Recently developed, biodegradable thermoplastic elastomers with shape-memory properties may be the key to develop new therapeutical options in head and neck surgery. Primary cell cultures of the oral cavity of Sprague-Dawley rats were seeded on the surface of a thermoplastic block copolymer and on a polystyrene surface as control. Conditioned media of the primary cells were analyzed for MMPs and TIMPs after different periods of cell growth. The MMP and TIMP expression was analysed by zymography and a radiometric enzyme assay. No statistically significant differences in the appearance and the kinetic of MMP-1, MMP-2, MMP-9 and TIMPs were detected between cells grown on the polymer surface compared to the control. An appropriate understanding of the molecular processes that regulate cellular growth and integration of a biomaterial in surrounding tissue is the requirement for an optimal adaptation of biodegradable, polymeric biomaterials to the physiological, anatomical, and surgical conditions in vivo to develop new therapeutic options in otolaryngology and head and neck surgery Y1 - 2005 ER - TY - JOUR A1 - Lendlein, Andreas A1 - Kelch, S. A1 - Schulte, J. A1 - Kratz, K. T1 - Shape-memory polymers Y1 - 2004 ER - TY - JOUR A1 - Groth, Thomas A1 - Lendlein, Andreas T1 - In-vivo-Reparatur von Blutgefäßen durch alternierende Adsorption von Polyelektrolyten Y1 - 2004 UR - http://www3.interscience.wiley.com/cgi-bin/fulltext/107614315/PDFSTART ER - TY - JOUR A1 - Santoso, F. A1 - Schroeter, M. A1 - Wagner, Albrecht A1 - Lendlein, Andreas A1 - Sckomaecker, R. T1 - Simultane Funktionalisierung und Porenöffnung von Polyetherimid-Membranen zur Entwicklung neuer Trägermaterialien für die Apharese Y1 - 2004 ER - TY - JOUR A1 - Groth, Thomas A1 - Lendlein, Andreas T1 - Layer-by-layer deposition of polyelectrolytes : a versatile tool for the in vivo repair of blood vessels and the preparation of biocompatible implant coatings Y1 - 2004 ER - TY - JOUR A1 - Rickert, D. A1 - Lendlein, Andreas A1 - Kelch, S. A1 - Moses, M. A. A1 - Franke, R. P. T1 - Biokompatibilitätstestung von bioabbaubaren Shape Memory Polymeren in vivo Y1 - 2004 ER - TY - JOUR A1 - Binzen, Eva A1 - Lendlein, Andreas A1 - Kelch, S. A1 - Rickert, D. A1 - Franke, R. P. T1 - Biomaterial-microvasculature interaction on polymers after implantation in mice Y1 - 2004 ER - TY - JOUR A1 - Rickert, D. A1 - Lendlein, Andreas A1 - Schmidt, A. M. A1 - Kelch, S. A1 - Roehlke, W. A1 - Fuhrmann, R. A1 - Franke, R. P. T1 - In vitro cytotoxicity testing of AB-polymer networks based on oligo(epsilon-caprolactone) segments after different sterilization techniques Y1 - 2003 ER - TY - JOUR A1 - Rickert, D. A1 - Moses, M. A. A1 - Lendlein, Andreas A1 - Kelch, S. A1 - Franke, R. P. T1 - The importance of angiogenesis in the interaction between polymeric biomaterials and surrounding tissue Y1 - 2003 ER - TY - JOUR A1 - Kelch, S. A1 - Lendlein, Andreas A1 - Müllen, A. A1 - Ridder, U. T1 - Textile Polymer Scaffolds for Tissue Engineering Y1 - 2003 ER - TY - JOUR A1 - Kelch, S. A1 - Lendlein, Andreas A1 - Müllen, A. A1 - Ridder, U. T1 - Textile Polymergerüste für das Tissue Engineering Y1 - 2003 ER - TY - JOUR A1 - Rottke, Falko O. A1 - Schulz, Burkhard A1 - Richau, Klaus A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - An ellipsometric approach towards the description of inhomogeneous polymer-based Langmuir layers JF - Beilstein journal of nanotechnology N2 - The applicability of nulling-based ellipsometric mapping as a complementary method next to Brewster angle microscopy (BAM) and imaging ellipsometry (IE) is presented for the characterization of ultrathin films at the air-water interface. First, the methodology is demonstrated for a vertically nonmoving Langmuir layer of star-shaped, 4-arm poly(omega-pentadecalactone) (PPDL-D4). Using nulling-based ellipsometric mapping, PPDL-D4-based inhomogeneously structured morphologies with a vertical dimension in the lower nm range could be mapped. In addition to the identification of these structures, the differentiation between a monolayer and bare water was possible. Second, the potential and limitations of this method were verified by applying it to more versatile Langmuir layers of telechelic poly[(rac-lactide)-co-glycolide]-diol (PLGA). All ellipsometric maps were converted into thickness maps by introduction of the refractive index that was derived from independent ellipsometric experiments, and the result was additionally evaluated in terms of the root mean square roughness, R-q. Thereby, a three-dimensional view into the layers was enabled and morphological inhomogeneity could be quantified. KW - ellipsometric mapping KW - Langmuir monolayer KW - polyester KW - root mean square roughness KW - spectroscopic ellipsometry Y1 - 2016 U6 - https://doi.org/10.3762/bjnano.7.107 SN - 2190-4286 VL - 7 SP - 1156 EP - 1165 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Rossberg, Joana A1 - Rottke, Falko O. A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Enzymatic Degradation of Oligo(epsilon-caprolactone)s End-Capped with Phenylboronic Acid Derivatives at the Air-Water Interface JF - Macromolecular rapid communications N2 - The influence of terminal functionalization of oligo(epsilon-caprolactone)s (OCL) with phenylboronic acid pinacol ester or phenylboronic acid on the enzymatic degradation behavior at the air-water interface is investigated by the Langmuir monolayer degradation technique. While the unsubstituted OCL immediately degrades after injection of the enzyme lipase from Pseudomonas cepacia, enzyme molecules are incorporated into the films based on end-capped OCL before degradation. This incorporation of enzymes does not inhibit or suppress the film degradation, but retards it significantly. A specific binding of lipase to the polymer monolayer allows studying the enzymatic activity of bound proteins and the influence on the degradation process. The functionalization of a macromolecule with phenyl boronic acid groups is an approach to investigate their interactions with diol-containing biomolecules like sugars and to monitor their specified impact on the enzymatic degradation behavior at the air-water interface. Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600471 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1966 EP - 1971 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Naolou, Toufik A1 - Rühl, Eckart A1 - Lendlein, Andreas T1 - Nanocarriers BT - Architecture, transport, and topical application of drugs for therapeutic use T2 - European Journal of Pharmaceutics and Biopharmaceutics Y1 - 2017 U6 - https://doi.org/10.1016/j.ejpb.2017.03.004 SN - 0939-6411 SN - 1873-3441 VL - 116 SP - 1 EP - 3 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Lendlein, Andreas T1 - Fabrication of reprogrammable shape-memory polymer actuators for robotics T2 - Science robotics N2 - Shape-memory polymer actuators, whose actuation geometry and switching temperatures are reprogrammable by physical fabrication schemes, were recently suggested for robotics with the option for self-healing and degradability. Y1 - 2018 U6 - https://doi.org/10.1126/scirobotics.aat9090 SN - 2470-9476 VL - 3 IS - 18 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Yuan, Jinkai A1 - Neri, Wilfrid A1 - Zakri, Cecile A1 - Merzeau, Pascal A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Poulin, Philippe T1 - Shape memory nanocomposite fibers for untethered high-energy microengines JF - Science N2 - Classic rotating engines are powerful and broadly used but are of complex design and difficult to miniaturize. It has long remained challenging to make large-stroke, high-speed, high-energy microengines that are simple and robust. We show that torsionally stiffened shape memory nanocomposite fibers can be transformed upon insertion of twist to store and provide fast and high-energy rotations. The twisted shape memory nanocomposite fibers combine high torque with large angles of rotation, delivering a gravimetric work capacity that is 60 times higher than that of natural skeletal muscles. The temperature that triggers fiber rotation can be tuned. This temperature memory effect provides an additional advantage over conventional engines by allowing for the tunability of the operation temperature and a stepwise release of stored energy. Y1 - 2019 U6 - https://doi.org/10.1126/science.aaw3722 SN - 0036-8075 SN - 1095-9203 VL - 365 IS - 6449 SP - 155 EP - 158 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Braune, Steffen A1 - Latour, Robert A. A1 - Reinthaler, Markus A1 - Landmesser, Ulf A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - In Vitro Thrombogenicity Testing of Biomaterials JF - Advanced healthcare materials N2 - The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed. KW - biomaterials KW - blood tests KW - implants KW - in vitro KW - thrombogenicity Y1 - 2019 U6 - https://doi.org/10.1002/adhm.201900527 SN - 2192-2640 SN - 2192-2659 VL - 8 IS - 21 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Krüger-Genge, A. A1 - Braune, S. A1 - Walter, M. A1 - Krengel, M. A1 - Kratz, K. A1 - Küpper, J. H. A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Influence of different surface treatments of poly(n-butyl acrylate) networks on fibroblasts adhesion, morphology and viability JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - BACKGROUND: Physical and chemical characteristics of implant materials determine the fate of long-term cardiovascular devices. However, there is still a lack of fundamental understanding of the molecular mechanisms occurring in the material-tissue interphase. In a previous study, soft covalently crosslinked poly(n-butyl acrylate) networks (cPnBA) were introduced as sterilizable, non-toxic and immuno-compatible biomaterials with mechanical properties adjustable to blood vessels. Here we study the influence of different surface treatments in particular oxygen plasma modification and fibrinogen deposition as well as a combinatorial approach on the adhesion and viability of fibroblasts. RESULTS: Compared to non-treated cPnBAs the advancing water-contact angles were found to be reduced after all surface modifications (p<0.05, each), while lowest values were observed after the combined surface treatment (OPT+FIB). The latter differed significantly from the single OPT and FIB. The number of adherent fibroblasts and their adherence behavior differed on both pristine cPnBA networks. The fibroblast density on cPnBA04 was 743 +/- 434 cells. mm(-2), was about 6.5 times higher than on cPnBA73 with 115 +/- 73 cells. mm(-2). On cPnBA04 about 20% of the cells were visible as very small, round and buckled cells while all other cells were in a migrating status. On cPnBA73, nearly 50% of fibroblasts were visible as very small, round and buckled cells. The surface functionalization either using oxygen plasma treatment or fibrinogen coating led to a significant increase of adherent fibroblasts, particularly the combination of both techniques, for both cPnBA networks. It is noteworthy to mention that the fibrinogen coating overruled the characteristics of the pristine surfaces; here, the fibroblast densities after seeding were identical for both cPnBAnetworks. Thus, the binding rather depended on the fibrinogen coating than on the substrate characteristics anymore. While the integrity of the fibroblasts membrane was comparable for both polymers, the MTS tests showed a decreased metabolic activity of the fibroblasts on cPnBA. CONCLUSION: The applied surface treatments of cPnBA successfully improved the adhesion of viable fibroblasts. Under resting conditions as well as after shearing the highest fibroblast densities were found on surfaces with combined post-treatment. KW - Biomaterial KW - poly(n-butyl acrylate) KW - fibroblast KW - oxygen plasma KW - fibrinogen KW - cell adhesion KW - focal adhesion KW - actin cytoskeleton KW - viability Y1 - 2018 U6 - https://doi.org/10.3233/CH-189130 SN - 1386-0291 SN - 1875-8622 VL - 69 IS - 1-2 SP - 305 EP - 316 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Krüger-Genge, Anne A1 - Schulz, Christian A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Comparison of two substrate materials used as negative control in endothelialization studies BT - Glass versus polymeric tissue culture plate JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - The endothelialization of synthetic surfaces applied as cardiovascular implant materials is an important issue to ensure the anti-thrombotic quality of a biomaterial. However, the rapid and constant development of a functionallycon-fluent endothelial cell monolayer is challenging. In order to investigate the compatibility of potential implant materials with endothelial cells several in vitro studies are performed. Here, glass and tissue culture plates (TCP) are often used as reference materials for in vitro pre-testing. However, a direct comparison of both substrates is lacking. Therefore, a comparison of study results is difficult, since results are often related to various reference materials. In this study, the endothelialization of glass and TCP was investigated in terms of adherence, morphology, integrity, viability and function using human umbilical vein endothelial cells (HUVEC). On both substrates an almost functionally confluent HUVEC monolayer was developed after nine days of cell seeding with clearly visible cell rims, decreased stress fiber formation and a pronounced marginal filament band. The viability of HUVEC was comparable for both substrates nine days after cell seeding with only a few dead cells. According to that, the cell membrane integrity as well as the metabolic activity showed no differences between TCP and glass. However, a significant difference was observed for the secretion of IL-6 and IL-8. The concentration of both cytokines, which are associated with migratory activity, was increased in the supernatant of HUVEC seeded on TCP. This result matches well with the slightly increased number of adherent HUVEC on TCP. In conclusion, these findings indicate that both reference materials are almost comparable and can be used equivalently as control materials in in vitro endothelialization studies. KW - Negative control KW - endothelial cells KW - glass KW - TCP KW - reference Y1 - 2018 U6 - https://doi.org/10.3233/CH-189904 SN - 1386-0291 SN - 1875-8622 VL - 69 IS - 3 SP - 437 EP - 445 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Jiang, Yi A1 - Mansfeld, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memo technology JF - MRS Communications N2 - Temperature-memory technology was utilized to generate flat substrates with a programmable stiffness pattern from cross-linked poly(ethylene-co-vinyl acetate) substrates with cylindrical microstructures. Programmed substrates were obtained by vertical compression at temperatures in the range from 60 to 100 degrees C and subsequent cooling, whereby a flat substrate was achieved by compression at 72 degrees C, as documented by scanning electron microscopy and atomic force microscopy (AFM). AFM nanoindentation experiments revealed that all programmed substrates exhibited the targeted stiffness pattern. The presented technology for generating polymeric substrates with programmable stiffness pattern should be attractive for applications such as touchpads. optical storage, or cell instructive substrates. Y1 - 2019 U6 - https://doi.org/10.1557/mrc.2019.24 SN - 2159-6859 SN - 2159-6867 VL - 9 IS - 1 SP - 181 EP - 188 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Jiang, Yi A1 - Mansfeld, Ulrich A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Temperature-induced evolution of microstructures on poly[ethylene-co-(vinyl acetate)] substrates switches their underwater wettability JF - Materials & design N2 - Material surfaces with tailored aerophobicity are crucial for applications where gas bubble wettability has to be controlled, e.g., gas storage and transport, electrodes, bioreactors or medical devices. Here, we present switchable underwater aerophobicity of hydrophobic polymeric substrates, which respond to heat with multilevel micro-and nanotopographical changes. The cross-linked poly[ethylene-co-(vinyl acetate)] substrates possess arrays of microcylinders with a nanorough top surface. It is hypothesized that the specific micro-/nanotopography of the surface allows trapping of a water film at the micro interspace and in this way generates the aerophobic behavior. The structured substrates were programmed to a temporarily stable, nanoscale flat substrate showing aerophilic behavior. Upon heating, the topographical changes caused a switch in contact angle from aerophilic to aerophobic for approaching air bubbles. In this way, the initial adhesion of air bubbles to the programmed flat substrate could be turned into repellence for the recovered substrate surface. The temperature at which the repellence of air bubbles starts can be adjusted from 58 +/- 3 degrees C to 73 +/- 3 degrees C by varying the deformation temperature applied during the temperature-memory programming procedure. The presented actively switching polymeric substrates are attractive candidates for applications, where an on-demand gas bubble repellence is advantageous. (c) 2018 Helmholtz-Zentrum Geesthacht, Zentrum fur Material- und Kustenforschung. Published by Elsevier Ltd. KW - Aerophobicity KW - Temperature-memory effect KW - Switchable wettability KW - Air bubble repellence KW - Thermo-responsive polymer Y1 - 2018 U6 - https://doi.org/10.1016/j.matdes.2018.12.002 SN - 0264-1275 SN - 1873-4197 VL - 163 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lendlein, Andreas A1 - Gould, Oliver E. C. T1 - Reprogrammable recovery and actuation behaviour of shape-memory polymers JF - Nature reviews. Materials N2 - Shape memory is the capability of a material to be deformed and fixed into a temporary shape. Recovery of the original shape can then be triggered only by an external stimulus. Shape-memory polymers are highly deformable materials that can be programmed to recover a memorized shape in response to a variety of environmental and spatially localized stimuli as a one-way effect. The shape-memory function can also be generated as a reversible effect enabling actuation behaviour through macroscale deformation and processing, specifically by dictating the macromolecular orientation of actuation units and of the skeleton structure of geometry-determining units in the polymers. Shape-memory polymers can be programmed and reprogrammed into arbitrary shapes. Both recovery and actuation behaviour are reprogrammable. In this Review, we outline the common basis and key differences between the two shape-memory behaviours of polymers in terms of mechanism, fabrication schemes and characterization methods. We discuss which combination of macromolecular architecture and macroscale processing is necessary for coordinated, decentralized and responsive physical behaviour. The extraction of relevant thermomechanical information is described, and design criteria are shown for microscale and macroscale morphologies to gain high levels of recovered or actuation strains as well as on-demand 2D-to-3D shape transformations. Finally, real-world applications and key future challenges are highlighted. Y1 - 2019 U6 - https://doi.org/10.1038/s41578-018-0078-8 SN - 2058-8437 VL - 4 IS - 2 SP - 116 EP - 133 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Reinthaler, Markus A1 - Johansson, Johan Backemo A1 - Braune, Steffen A1 - Al-Hindwan, Haitham Saleh Ali A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Shear-induced platelet adherence and activation in an in-vitro dynamic multiwell-plate system JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Circulating blood cells are prone to varying flow conditions when contacting cardiovascular devices. For a profound understanding of the complex interplay between the blood components/cells and cardiovascular implant surfaces, testing under varying shear conditions is required. Here, we study the influence of arterial and venous shear conditions on the in vitro evaluation of the thrombogenicity of polymer-based implant materials. Medical grade poly(dimethyl siloxane) (PDMS), polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) films were included as reference materials. The polymers were exposed to whole blood from healthy humans. Blood was agitated orbitally at low (venous shear stress: 2.8 dyne. cm(-2)) and high (arterial shear stress: 22.2 dyne .cm(-2)) agitation speeds in a well-plate based test system. Numbers of non-adherent platelets, platelet activation (P-Selectin positive platelets), platelet function (PFA100 closure times) and platelet adhesion (laser scanning microscopy (LSM)) were determined. Microscopic data and counting of the circulating cells revealed increasing numbers of material-surface adherent platelets with increasing agitation speed. Also, activation of the platelets was substantially increased when tested under the high shear conditions (P-Selectin levels, PFA-100 closure times). At low agitation speed, the platelet densities did not differ between the three materials. Tested at the high agitation speed, lowest platelet densities were observed on PDMS, intermediate levels on PET and highest on PTFE. While activation of the circulating platelets was affected by the implant surfaces in a similar manner, PFA closure times did not reflect this trend. Differences in the thrombogenicity of the studied polymers were more pronounced when tested at high agitation speed due to the induced shear stresses. Testing under varying shear stresses, thus, led to a different evaluation of the implant thrombogenicity, which emphasizes the need for testing under various flow conditions. Our data further confirmed earlier findings where the same reference implants were tested under static (and not dynamic) conditions and with fresh human platelet rich plasma instead of whole blood. This supports that the application of common reference materials may improve inter-study comparisons, even under varying test conditions. Y1 - 2019 U6 - https://doi.org/10.3233/CH-189410 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 183 EP - 191 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Kuhnla, A. A1 - Reinthaler, Markus A1 - Braune, Steffen A1 - Maier, A. A1 - Pindur, Gerhard A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Spontaneous and induced platelet aggregation in apparently healthy subjects in relation to age JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Thrombotic disorders remain the leading cause of mortality and morbidity, despite the fact that anti-platelet therapies and vascular implants are successfully used today. As life expectancy is increasing in western societies, the specific knowledge about processes leading to thrombosis in elderly is essential for an adequate therapeutic management of platelet dysfunction and for tailoring blood contacting implants. This study addresses the limited available data on platelet function in apparently healthy subjects in relation to age, particularly in view of subjects of old age (80-98 years). Apparently healthy subjects between 20 and 98 years were included in this study. Platelet function was assessed by light transmission aggregometry and comprised experiments on spontaneous as well as ristocetin-, ADP- and collagen-induced platelet aggregation. The data of this study revealed a non-linear increase in the maximum spontaneous platelet aggregation (from 3.3% +/- 3.3% to 10.9% +/- 5.9%). The maximum induced aggregation decreased with age for ristocetin (from 85.8% +/- 7.2% to 75.0% +/- 7.8%), ADP (from 88.5% +/- 4.6% to 64.8% +/- 7.3%) and collagen (from 89.5% +/- 3.0% to 64.0% +/- 4.0%) in a non-linear manner (linear regression analysis). These observations indicate that during aging, circulating platelets become increasingly activated but lose their full aggregatory potential, a phenomenon that was earlier termed "platelet exhaustion". In this study we extended the limited existing data for spontaneous and induced platelet aggregation of apparently healthy donors above the age of 75 years. The presented data indicate that the extrapolation of data from a middle age group does not necessarily predict platelet function in apparently healthy subjects of old age. It emphasizes the need for respective studies to improve our understanding of thrombotic processes in elderly humans. Y1 - 2019 U6 - https://doi.org/10.3233/CH-199006 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 425 EP - 435 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Li, Zhengdong A1 - Xu, Xun A1 - Wang, Weiwei A1 - Kratz, Karl A1 - Sun, Xianlei A1 - Zou, Jie A1 - Deng, Zijun A1 - Jung, Friedrich Wilhelm A1 - Gossen, Manfred A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulation of the mesenchymal stem cell migration capacity via preconditioning with topographic microstructure JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Controlling mesenchymal stem cells (MSCs) behavior is necessary to fully exploit their therapeutic potential. Various approaches are employed to effectively influence the migration capacity of MSCs. Here, topographic microstructures with different microscale roughness were created on polystyrene (PS) culture vessel surfaces as a feasible physical preconditioning strategy to modulate MSC migration. By analyzing trajectories of cells migrating after reseeding, we demonstrated that the mobilization velocity of human adipose derived mesenchymal stem cells (hADSCs) could be promoted by and persisted after brief preconditioning with the appropriate microtopography. Moreover, the elevated activation levels of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) in hADSCs were also observed during and after the preconditioning process. These findings underline the potential enhancement of in vivo therapeutic efficacy in regenerative medicine via transplantation of topographic microstructure preconditioned stem cells. KW - Mesenchymal stem cells KW - precondition KW - microstructure KW - migration KW - FAK-MAPK Y1 - 2017 U6 - https://doi.org/10.3233/CH-179208 SN - 1386-0291 SN - 1875-8622 VL - 67 SP - 267 EP - 278 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Zou, Jie A1 - Wang, Weiwei A1 - Neffe, Axel T. A1 - Xu, Xun A1 - Li, Zhengdong A1 - Deng, Zijun A1 - Sun, Xianlei A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel) JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Polymeric matrices mimicking multiple functions of the ECM are expected to enable a material induced regeneration of tissues. Here, we investigated the adipogenic differentiation of human adipose derived mesenchymal stem cells (hADSCs) in a 3D architectured gelatin based hydrogel (ArcGel) prepared from gelatin and L-lysine diisocyanate ethyl ester (LDI) in an one-step process, in which the formation of an open porous morphology and the chemical network formation were integrated. The ArcGel was designed to support adipose tissue regeneration with its 3D porous structure, high cell biocompatibility, and mechanical properties compatible with human subcutaneous adipose tissue. The ArcGel could support initial cell adhesion and survival of hADSCs. Under static culture condition, the cells could migrate into the inner part of the scaffold with a depth of 840 +/- 120 mu m after 4 days, and distributed in the whole scaffold (2mm in thickness) within 14 days. The cells proliferated in the scaffold and the fold increase of cell number after 7 days of culture was 2.55 +/- 0.08. The apoptotic rate of hADSCs in the scaffold was similar to that of cells maintained on tissue culture plates. When cultured in adipogenic induction medium, the hADSCs in the scaffold differentiated into adipocytes with a high efficiency (93 +/- 1%). Conclusively, this gelatin based 3D scaffold presented high cell compatibility for hADSC cultivation and differentiation, which could serve as a potential implant material in clinical applications for adipose tissue reparation and regeneration. KW - Mesenchymal stem cells KW - gelatin based scaffold KW - adipose tissue regeneration KW - adipogenic differentiation Y1 - 2017 U6 - https://doi.org/10.3233/CH-179210 SN - 1386-0291 SN - 1875-8622 VL - 67 IS - 3-4 SP - 297 EP - 307 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Heilmann, Katja A1 - Groth, Thomas A1 - Schossig, Michael A1 - Lendlein, Andreas A1 - Micheel, Burkhard T1 - Modulation of hybridoma cell growth and antibody production by coating cell culture material with extracellular matrix proteins N2 - The influence of coating polystyrene tissue culture plates with different proteins on murine hybridoma cell growth and antibody production was investigated. Fibronectin, collagen I, bovine serum albumin and laminin were used to coat NUNC and COSTAR cell culture plates. Cell number and antibody concentration in culture fluids were quantified as indicators for cell viability, proliferation and productivity. Adhesive behaviour, morphology, expression of surface receptors of hybridoma cells and the presence of tyrosine-phosphorylated proteins in cell lysates were characterized by cell adhesion experiments, microscopy, flow cytometry and Western Blot analysis. It was shown that coatings with fibronectin (0.2 ;g/ml) lead to a substantial improvement of cell growth by 50-70% and an increase of monoclonal antibody production by 100-120%. Collagen I coatings showed an improvement in cell growth by 30-70% and by 60% for the production of monoclonal antibodies. Coatings with BSA and laminin had minor effects on these parameters. It was found that the hybridoma cell lines used in this study did not express the ;2-chain of the ;2;1-integrin, which is responsible for binding to collagen and laminin. However, the presence of ;1- integrin on the cell surface was shown, which should enable hybridoma cells to bind fibronectin. We propose, therefore, that fibronectin adsorption to cell culture materials may be a promising approach to enhance the production of monoclonal antibodies by cultivated hybridoma cells. Y1 - 2007 UR - http://www.sciencedirect.com/science/journal/1369703X U6 - https://doi.org/10.1016/j.bej.2007.01.035 SN - 1369-703X ER - TY - JOUR A1 - Braune, Steffen A1 - Walter, M. A1 - Schulze, F. A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Changes in platelet morphology and function during 24 hours of storage JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - For in vitro studies assessing the interaction of platelets with implant materials, common and standardized protocols for the preparation of platelet rich plasma (PRP) are lacking, which may lead to non-matching results due to the diversity of applied protocols. Particularly, the aging of platelets during prolonged preparation and storage times is discussed to lead to an underestimation of the material thrombogenicity. Here, we study the influence of whole blood-and PRP-storage times on changes in platelet morphology and function. Whole blood PFA100 closure times increased after stimulation with collagen/ADP and collagen/epinephrine. Twenty four hours after blood collection, both parameters were prolonged pathologically above the upper limit of the reference range. Numbers of circulating platelets, measured in PRP, decreased after four hours, but no longer after twenty four hours. Mean platelet volumes (MPV) and platelet large cell ratios (P-LCR, 12 fL - 40 fL) decreased over time. Immediately after blood collection, no debris or platelet aggregates could be visualized microscopically. After four hours, first debris and very small aggregates occurred. After 24 hours, platelet aggregates and also debris progressively increased. In accordance to this, the CASY system revealed an increase of platelet aggregates (up to 90 mu m diameter)with increasing storage time. The percentage of CD62P positive platelets and PF4 increased significantly with storage time in resting PRP. When soluble ADP was added to stored PRP samples, the number of activatable platelets decreased significantly over storage time. The present study reveals the importance of a consequent standardization in the preparation of WB and PRP. Platelet morphology and function, particularly platelet reactivity to adherent or soluble agonists in their surrounding milieu, changed rapidly outside the vascular system. This knowledge is of crucial interest, particularly in the field of biomaterial development for cardiovascular applications, and may help to define common standards in the in vitro hemocompatibility testing of biomaterials. KW - Platelet KW - platelet function KW - platelet rich plasma KW - whole blood KW - platelet aging KW - platelet storage KW - hemocompatibility KW - biomaterials Y1 - 2014 U6 - https://doi.org/10.3233/CH-141876 SN - 1386-0291 SN - 1875-8622 VL - 58 IS - 1 SP - 159 EP - 170 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Nöchel, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Influence of deformation temperature on structural variation and shape-memory effect of a thermoplastic semi-crystalline multiblock copolymer JF - eXPRESS polymer letters N2 - A multiblock copolymer termed as PCL-PIBMD, consisting of crystallizable poly(epsilon-caprolactone) (PCL) segments and crystallizable poly(3S-isobutyl-morpholine-2,5-dione) (PIBMD) segments, has been reported as a material showing a thermally-induced shape-memory effect. While PIBMD crystalline domains act as netpoints to determine the permanent shape, both PCL crystalline domains and PIBMD amorphous domains, which have similar transition temperatures (T-trans) can act as switching domains. In this work, the influence of the deformation temperature (T-deform = 50 or 20 degrees C), which was above or below T-trans, on the structural changes of PCL-PIBMD during uniaxial deformation and the shapememory properties were investigated. Furthermore, the relative contribution of crystalline PCL and PIBMD amorphous phases to the fixation of the temporary shape were distinguished by a toluene vapor treatment approach. The results indicated that at 50 degrees C, both PCL and PIBMD amorphous phases can be orientated during deformation, resulting in thermally-induced crystals of PCL domains and joint contribution to the switching domains. In contrast at 20 degrees C, the temporary shape was mainly fixed by PCL crystals generated via strain-induced crystallization. KW - biodegradable polymers KW - shape-memory polymer KW - multiblock copolymer KW - polydepsipeptide Y1 - 2015 U6 - https://doi.org/10.3144/expresspolymlett.2015.58 SN - 1788-618X VL - 9 IS - 7 SP - 624 EP - 635 PB - Budapest University of Technology and Economics, Department of Polymer Engineering CY - Budapest ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Schulz, Burkhard A1 - Richau, Klaus A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Characterization of Langmuir films prepared from copolyesterurethanes based on oligo(omega-pentadecalactone) and oligo(epsilon-caprolactone)segments JF - Macromolecular chemistry and physics N2 - A series of multiblock copolymers (PDLCL) synthesized from oligo(omega-pentadecalactone) diol (OPDL) and oligo(epsilon-caprolactone) diol (OCL), which are linked by 2,2(4), 4-trimethyl-hexamethylene diisocyanate (TMDI), is investigated by the Langmuir monolayer technique at the air-water interface. Brewster angle microscopy (BAM) and spectroscopic ellipsometry are employed to characterize the polymer film morphologies in situ. PDLCL containing >= 40 wt% OCL segments form homogeneous Langmuir monofilms after spreading. The film elasticity modulus decreases with increasing amounts of OPDL segments in the copolymer. In contrast, the OCL-free polyesterurethane OPDL-TMDI cannot be spread to monomolecular films on the water surface properly, and movable slabs are observed by BAM even at low surface pressures. The results of the in situ morphological characterization clearly show that essential information concerning the reliability of Langmuir monolayer degradation (LMD) experiments cannot be obtained from the evaluation of the pi-A isotherms only. Consequently, in situ morphological characterization turns out to be indispensable for characterization of Langmuir layers before LMD experiments. KW - brewster angle microscopy KW - ellipsometry KW - Langmuir layers KW - morphology KW - polyesterurethanes Y1 - 2014 U6 - https://doi.org/10.1002/macp.201400377 SN - 1022-1352 SN - 1521-3935 VL - 215 IS - 24 SP - 2437 EP - 2445 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Reiche, Jürgen A1 - Kratz, Karl A1 - Hofmann, Dieter A1 - Lendlein, Andreas T1 - Current status of Langmuir monolayer degradation of polymeric biomaterials JF - The international journal of artificial organs N2 - Langmuir monolayer degradation (LMD) experiments with polymers possessing outstanding biomedical application potential yield information regarding the kinetics of their hydrolytic or enzymatic chain scission under well-defined and adjustable degradation conditions. A brief review is given of LMD investigations, including the author's own work on 2-dimensional (2D) polymer systems, providing chain scission data, which are not disturbed by simultaneously occurring transport phenomena, such as water penetration into the sample or transport of scission fragments out of the sample. A knowledge-based approach for the description and simulation of polymer hydrolytic and enzymatic degradation based on a combination of fast LMD experiments and computer simulation of the water penetration is briefly introduced. Finally, the advantages and disadvantages of this approach are discussed. KW - Monolayer KW - Hydrolytic degradation KW - Enzymatic degradation KW - Biomaterial KW - Degradable polymer Y1 - 2011 U6 - https://doi.org/10.5301/IJAO.2011.6401 SN - 0391-3988 VL - 34 IS - 2 SP - 123 EP - 128 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Tartivel, Lucile A1 - Behl, Marc A1 - Schröter, Michael A1 - Lendlein, Andreas T1 - Hydrogel networks based on ABA triblock copolymers JF - Journal of applied biomaterials & functional materials N2 - Background: Triblock copolymers from hydrophilic oligo(ethylene glycol) segment A and oligo(propylene glycol) segment B, providing an ABA structure (OEG-OPG-OEG triblock), are known to be biocompatible and are used as self-solidifying gels in drug depots. A complete removal of these depots would be helpful in cases of undesired side effects of a drug, but this remains a challenge as they liquefy below their transition temperature. Therefore we describe the synthesis of covalently cross-linked hydrogel networks. Method: Triblock copolymer-based hydrogels were created by irradiating aqueous solutions of the corresponding macro-dimethacrylates with UV light. The degree of swelling, swelling kinetics, mechanical properties and morphology of the networks were investigated. Results: Depending on precursor concentration, equilibrium degree of swelling of the films ranged between 500% and 880% and was reached in 1 hour. In addition, values for storage and loss moduli of the hydrogel networks were in the 100 Pa to 10 kPa range. Conclusion: Although OEG-OPG-OEG triblocks are known for their micellization, which could hamper polymer network formation, reactive OEG-OPG-OEG triblock oligomers could be successfully polymerized into hydrogel networks. The degree of swelling of these hydrogels depends on their molecular weight and on the oligomer concentration used for hydrogel preparation. In combination with the temperature sensitivity of the ABA triblock copolymers, it is assumed that such hydrogels might be beneficial for future medical applications -e.g., removable drug release systems. KW - Hydrogel KW - Rheological characterization KW - Oligo(ethylene glycol) derivatization KW - OEG-OPG-OEG triblock copolymer KW - UV crosslinking Y1 - 2012 U6 - https://doi.org/10.5301/JABFM.2012.10295 SN - 2280-8000 VL - 10 IS - 3 SP - 243 EP - 248 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Richau, Klaus A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Influence of Diurethane Linkers on the Langmuir Layer Behavior of Oligo[(rac-lactide)-co-glycolide]-based Polyesterurethanes JF - Macromolecular rapid communications N2 - Three oligo[(rac-lactide)-co-glycolide] based polyesterurethanes (OLGA-PUs) containing different diurethane linkers are investigated by the Langmuir monolayer technique and compared to poly[(rac-lactide)-co-glycolide] (PLGA) to elucidate the influence of the diurethane junction units on hydrophilicity and packing motifs of these polymers at the air-water interface. The presence of diurethane linkers does not manifest itself in the Langmuir layer behavior both in compression and expansion experiments when monomolecular films of OLGA-PUs are spread on the water surface. However, the linker retard the evolution of morphological structures at intermediate compression level under isobaric conditions (with a surface pressure greater than 11 mN m(-1)) compared to the PLGA, independent on the chemical structure of the diurethane moiety. The layer thicknesses of both OLGA-PU and PLGA films decrease in the high compression state with decreasing surface pressure, as deduced from ellipsometric data. All films must be described with the effective medium approximation as water swollen layers. KW - Brewster angle microscopy KW - Langmuir monolayer KW - poly[(rac-lactide)-co-glycolide] KW - polyesterurethanes KW - spectroscopic ellipsometry Y1 - 2015 U6 - https://doi.org/10.1002/marc.201500316 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 21 SP - 1910 EP - 1915 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wang, Li A1 - Baudis, Stefan A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Characterization of bi-layered magnetic nanoparticles synthesized via two-step surface-initiated ring-opening polymerization JF - Pure and applied chemistry : official journal of the International Union of Pure and Applied Chemistry N2 - A versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)(2) as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto-and thermo-sensitive polymer networks were prepared via two subsequent surfaceinitiated ring-opening polymerizations (ROPs) with omega-pentadecalactone and e-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85 degrees C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and H-1-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(omega-pentadecalactone) (OPDL) and oligo(e-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few.-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)(2) was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP. KW - degradable polyester KW - magnetic nanoparticles KW - nanoparticle characterization KW - NICE-2014 KW - ring opening polymerization KW - surface functionalization Y1 - 2015 U6 - https://doi.org/10.1515/pac-2015-0607 SN - 0033-4545 SN - 1365-3075 VL - 87 IS - 11-12 SP - 1085 EP - 1097 PB - De Gruyter CY - Berlin ER - TY - GEN A1 - Jiang, Yi A1 - Mansfeld, Ulrich A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Temperature-induced evolution of microstructures on poly[ethylene-co-(vinyl acetate)] substrates switches their underwater wettability T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Material surfaces with tailored aerophobicity are crucial for applications where gas bubble wettability has to be controlled, e.g., gas storage and transport, electrodes, bioreactors or medical devices. Here, we present switchable underwater aerophobicity of hydrophobic polymeric substrates, which respond to heat with multilevel micro- and nanotopographical changes. The cross-linked poly[ethylene-co-(vinyl acetate)] substrates possess arrays of microcylinders with a nanorough top surface. It is hypothesized that the specific micro-/nanotopography of the surface allows trapping of a water film at the micro interspace and in this way generates the aerophobic behavior. The structured substrates were programmed to a temporarily stable, nanoscale flat substrate showing aerophilic behavior. Upon heating, the topographical changes caused a switch in contact angle from aerophilic to aerophobic for approaching air bubbles. In this way, the initial adhesion of air bubbles to the programmed flat substrate could be turned into repellence for the recovered substrate surface. The temperature at which the repellence of air bubbles starts can be adjusted from 58 ± 3 °C to 73 ± 3 °C by varying the deformation temperature applied during the temperature-memory programming procedure. The presented actively switching polymeric substrates are attractive candidates for applications, where an on-demand gas bubble repellence is advantageous. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 639 KW - aerophobicity KW - temperature-memory effect KW - switchable wettability KW - air bubble repellence KW - thermo-responsive polymer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424601 SN - 1866-8372 IS - 639 ER - TY - JOUR A1 - Tetali, Sarada D. A1 - Jankowski, Vera A1 - Luetzow, Karola A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Jankowski, Joachim T1 - Adsorption capacity of poly(ether imide) microparticles to uremic toxins JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Uremia is a phenomenon caused by retention of uremic toxins in the plasma due to functional impairment of kidneys in the elimination of urinary waste products. Uremia is presently treated by dialysis techniques like hemofiltration, dialysis or hemodiafiltration. However, these techniques in use are more favorable towards removing hydrophilic than hydrophobic uremic toxins. Hydrophobic uremic toxins, such as hydroxy hipuric acid (OH-HPA), phenylacetic acid (PAA), indoxyl sulfate (IDS) and p-cresylsulfate (pCRS), contribute substantially to the progression of chronic kidney disease (CKD) and cardiovascular disease. Therefore, objective of the present study is to test adsorption capacity of highly porous microparticles prepared from poly(ether imide) (PEI) as an alternative technique for the removal of uremic toxins. Two types of nanoporous, spherically shaped microparticles were prepared from PEI by a spraying/coagulation process. PEI particles were packed into a preparative HPLC column to which a mixture of the four types of uremic toxins was injected and eluted with ethanol. Eluted toxins were quantified by analytical HPLC. PEI particles were able to adsorb all four toxins, with the highest affinity for PAA and pCR. IDS and OH-HPA showed a partially non-reversible binding. In summary, PEI particles are interesting candidates to be explored for future application in CKD. KW - Adsorption of uremic toxins KW - chronic kidney disease (CKD) KW - hydrophobic uremic toxins KW - poly(ether imide) KW - microparticles KW - uremia Y1 - 2016 U6 - https://doi.org/10.3233/CH-152026 SN - 1386-0291 SN - 1875-8622 VL - 61 SP - 657 EP - 665 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Kumar, Reddi K. A1 - Basu, Sayantani A1 - Lemke, Horst-Dieter A1 - Jankowski, Joachim A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Tetali, Sarada D. T1 - Effect of extracts of poly(ether imide) microparticles on cytotoxicity, ROS generation and proinflammatory effects on human monocytic (THP-1) cells JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - A high cell viability of around 99 +/- 18% and 99 +/- 5% was observed when THP-1 cells were cultured in the presence of aqueous extracts of the PEI microparticles in medium A and medium B respectively. The obtained microscopic data suggested that PEI particle extracts have no significant effect on cell death, oxidative stress or differentiation to macrophages. It was further found that the investigated proinflammatory markers in THP-1 cells were not up-regulated. These results are promising with regard to the biocompatibility of PEI microparticles and in a next step the hemocompatibility of the microparticles will be examined. KW - Chronic kidney disease (CKD) KW - cytotoxicity KW - human monocytic (THP-1) cells KW - poly(ether imide) microparticles KW - reactive oxygen species (ROS) Y1 - 2016 U6 - https://doi.org/10.3233/CH-152027 SN - 1386-0291 SN - 1875-8622 VL - 61 SP - 667 EP - 680 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Stimuli Responsive and Multifunctional Polymers: Progress in Materials and Applications JF - Macromolecular rapid communications Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600650 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1856 EP - 1859 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Fang, Liang A1 - Yan, Wan A1 - Nöchel, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Programming structural functions in phase-segregated polymers by implementing a defined thermomechanical history JF - Polymer : the international journal for the science and technology of polymers N2 - Unwanted shrinkage behaviors or failure in structural functions such as mechanical strength or deformability of polymeric products related to their thermomechanical history are a major challenge in production of plastics. Here, we address the question whether we can turn this challenge into an opportunity by creating defined thermomechanical histories in polymers, represented by a specific morphology and nanostructure, to equip polymeric shaped bodies with desired functions, e.g. a temperature-memory, by hot, warm or cold deformation into multiblock copolymers having two partially overlapping melting transitions. A copolyesterurethane named PDLCL, consisting of poly(epsilon-caprolactone) (PCL) and poly(omega-pentadecalactone) (PPDL) crystalline domains, exhibiting a pronounced phase-segregated morphology and partially overlapping melting transitions was selected for this study. Different types of PCL and PPDL crystals as well as distinct degrees of orientation in both amorphous and crystalline domains were obtained after deformation at 20 or 40 degrees C and to a lower extent at 60 degrees C. The generated non-isotropic structures were stable at ambient temperature and represent the different stresses stored. Stress-free heating experiments showed that the relaxation in both amorphous and crystalline phases occurred predominantly with melting of PCL crystals. When the switching temperature, which was similar to the applied deformation temperature (temperature-memory), was exceeded in stress-free heating experiments, the implemented thermomechanical history could be reversed. In contrast, during constant-strain heating to 60 degrees C the generated structural features remained almost unchanged. These findings provide insights about the structure function relation in multiblock copolymers with two crystalline phases exhibiting a temperature-memory effect by implementation of specific thermomechanical histories, which might be a general principle for tailoring other functions like mechanical strength or deformability in polymers. (C) 2016 Elsevier Ltd. All rights reserved. KW - Temperature-memory effect KW - Phase morphology KW - Thermomechanical history Y1 - 2016 U6 - https://doi.org/10.1016/j.polymer.2016.08.105 SN - 0032-3861 SN - 1873-2291 VL - 102 SP - 54 EP - 62 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - The relevance of hydrophobic segments in multiblock copolyesterurethanes for their enzymatic degradation at the air-water interface JF - Polymer : the international journal for the science and technology of polymers N2 - The interplay of an enzyme with a multiblock copolymer PDLCL containing two segments of different hydrophilicity and degradability is explored in thin films at the air-water interface. The enzymatic degradation was studied in homogenous Langmuir monolayers, which are formed when containing more than 40 wt% oligo(epsilon-caprolactone) (OCL). Enzymatic degradation rates were significantly reduced with increasing content of hydrophobic oligo(omega-pentadecalactone) (OPDL). The apparent deceleration of the enzymatic process is caused by smaller portion of water-soluble degradation fragments formed from degradable OCL fragments. Beside the film degradation, a second competing process occurs after adding lipase from Pseudomonas cepacia into the subphase, namely the enrichment of the lipase molecules in the polymeric monolayer. The incorporation of the lipase into the Langmuir film is experimentally revealed by concurrent surface area enlargement and by Brewster angle microscopy (BAM). Aside from the ability to provide information about the degradation behavior of polymers, the Langmuir monolayer degradation (LMD) approach enables to investigate polymer-enzyme interactions for non-degradable polymers. (C) 2016 Elsevier Ltd. All rights reserved. KW - Multiblock copolymer KW - Enzymatic polymer degradation KW - Oligo(omega-pentadecalactone) KW - Oligo(epsilon-caprolactone) KW - Langmuir monolayer degradation technique Y1 - 2016 U6 - https://doi.org/10.1016/j.polymer.2016.09.001 SN - 0032-3861 SN - 1873-2291 VL - 102 SP - 92 EP - 98 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Polymer architecture versus chemical structure as adjusting tools for the enzymatic degradation of oligo(epsilon-caprolactone) based films at the air-water interface JF - Polymer Degradation and Stability N2 - The enzymatic degradation of oligo(epsilon-caprolactone) (OCL) based films at the air-water interface is investigated by Langmuir monolayer degradation (LMD) experiments to elucidate the influence of the molecular architecture and of the chemical structure on the chain scission process. For that purpose, the interactions of 2D monolayers of two star-shaped poly(epsilon-caprolactone)s (PCLs) and three linear OCL based copolyesterurethanes (P(OCL-U)) with the lipase from Pseudomonas cepacia are evaluated in comparison to linear OCL. While the architecture of star-shaped PCL Langmuir layers slightly influences their degradability compared to OCL films, significantly retarded degradations are observed for P(OCL-U) films containing urethane junction units derived from 2, 2 (4), 4-trimethyl hexamethylene diisocyanate (TMDI), hexamethylene diisocyanate (HDI) or lysine ethyl ester diisocyanate (LDI). The enzymatic degradation of the OCL based 2D structures is related to the presence of hydrophilic groups within the macromolecules rather than to the packing density of the film or to the molecular weight. The results reveal that the LMD technique allows the parallel analysis of both the film/enzyme interactions and the degradation process on the molecular level. (C) 2016 Elsevier Ltd. All rights reserved. KW - Langmuir technique KW - Oligo(epsilon-caprolactone) KW - Enzymatic degradation KW - Polymer architecture Y1 - 2016 U6 - https://doi.org/10.1016/j.polymdegradstab.2016.07.010 SN - 0141-3910 SN - 1873-2321 VL - 131 SP - 114 EP - 121 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Nöchel, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Influence of programming strain rates on the shape-memory performance of semicrystalline multiblock copolymers JF - Journal of polymer science : B, Polymer physics N2 - Multiblock copolymers named PCL-PIBMD consisting of crystallizable poly(epsilon-caprolactone) segments and crystallizable poly[oligo(3S-iso-butylmorpholine-2,5-dione)] segments coupled by trimethyl hexamethylene diisocyanate provide a versatile molecular architecture for achieving shape-memory effects (SMEs) in polymers. The mechanical properties as well as the SME performance of PCL-PIBMD can be tailored by the variation of physical parameters during programming such as deformation strain or applied temperature protocols. In this study, we explored the influence of applying different strain rates during programming on the resulting nanostructure of PCL-PIBMD. Programming was conducted at 50 degrees C by elongation to epsilon(m)=50% with strain rates of 1 or 10 or 50 mmmin(-1). The nanostructural changes were visualized by atomic force microscopy (AFM) measurements and investigated by in situ wide and small angle X-ray scattering experiments. With increasing the strain rate, a higher degree of orientation was observed in the amorphous domains. Simultaneously the strain-induced formation of new PIBMD crystals as well as the fragmentation of existing large PIBMD crystals occurred. The observed differences in shape fixity ratio and recovery stress of samples deformed with various strain rates can be attributed to their different nanostructures. The achieved findings can be relevant parameters for programming the shape-memory polymers with designed recovery forces. (c) 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1935-1943 KW - atomic force microscopy (AFM) KW - crystal structures KW - crystallization KW - multiblock copolymer KW - stimuli-sensitive polymers KW - SAXS KW - shape-memory effect KW - WAXS KW - X-ray scattering Y1 - 2016 U6 - https://doi.org/10.1002/polb.24097 SN - 0887-6266 SN - 1099-0488 VL - 54 SP - 1935 EP - 1943 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Braune, Steffen A1 - Gross, M. A1 - Walter, M. A1 - Zhou, Shengqiang A1 - Dietze, Siegfried A1 - Rutschow, S. A1 - Lendlein, Andreas A1 - Tschoepe, C. A1 - Jung, Friedrich T1 - Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials JF - Journal of biomedical materials research : an official journal of the Society for Biomaterials, the Japanese Society for Biomaterials; the Australian Society for Biomaterials N2 - On the basis of the clinical studies in patients with coronary artery disease (CAD) presenting an increased percentage of activated platelets, we hypothesized that hemocompatibility testing utilizing platelets from healthy individuals may result in an underestimation of the materials' thrombogenicity. Therefore, we investigated the interaction of polymer-based biomaterials with platelets from CAD patients in comparison to platelets from apparently healthy individuals. In vitro static thrombogenicity tests revealed that adherent platelet densities and total platelet covered areas were significantly increased for the low (polydimethylsiloxane, PDMS) and medium (Collagen) thrombogenic surfaces in the CAD group compared to the healthy subjects group. The area per single platelet—indicating the spreading and activation of the platelets—was markedly increased on PDMS treated with PRP from CAD subjects. This could not be observed for collagen or polytetrafluoroethylene (PTFE). For the latter material, platelet adhesion and surface coverage did not differ between the two groups. Irrespective of the substrate, the variability of these parameters was increased for CAD patients compared to healthy subjects. This indicates a higher reactivity of platelets from CAD patients compared to the healthy individuals. Our results revealed, for the first time, that utilizing platelets from apparently healthy donors bears the risk of underestimating the thrombogenicity of polymer-based biomaterials. KW - platelets KW - biomaterials KW - hemocompatibility KW - cardiovascular disease KW - cardiovascular implant Y1 - 2016 U6 - https://doi.org/10.1002/jbm.b.33366 SN - 1552-4973 SN - 1552-4981 VL - 104 SP - 210 EP - 217 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Braune, Steffen A1 - Froehlich, G. M. A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Effect of temperature on platelet adherence JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - BACKGROUND: Thrombogenicity is one of the main parameters tested in vitro to evaluate the hemocompatibility of artificial surfaces. While the influence of the temperature on platelet aggregation has been addressed by several studies, the temperature influence on the adherence of platelets to body foreign surfaces as an important aspect of biomedical device handling has not yet been explored. Therefore, we analyzed the influence of two typically applied incubation-temperatures (22 degrees C and 37 degrees C) on the adhesion of platelets to biomaterials. MATERIAL AND METHODS: Thrombogenicity of three different polymers - medical grade poly(dimethyl siloxane) (PDMS), polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) - were studied in an in vitro static test. Platelet adhesion was studied with stringently characterized blood from apparently healthy subjects. Collection of whole blood and preparation of platelet rich plasma (PRP) was carried out at room temperature (22 degrees C). PRP was incubated with the polymers either at 22 degrees C or 37 degrees C. Surface adherent platelets were fixed, fluorescently labelled and assessed by an image-based approach. RESULTS AND DISCUSSION: Differences in the density of adherent platelets after incubation at 22 degrees C and 37 degrees C occurred on PDMS and PET. Similar levels of adherent platelets were observed on the very thrombogenic PTFE. The covered surface areas per single platelet were analyzed to measure the state of platelet activation and revealed no differences between the two incubation temperatures for any of the analyzed polymers. Irrespective of the observed differences between the low and medium thrombogenic PDMS and PET and the higher variability at 22 degrees C, the thrombogenicity of the three investigated polymers was evaluated being comparable at both incubation temperatures. KW - Biomaterial KW - thrombogenicity KW - platelet adhesion KW - platelet activation KW - temperature Y1 - 2016 U6 - https://doi.org/10.3233/CH-152028 SN - 1386-0291 SN - 1875-8622 VL - 61 SP - 681 EP - 688 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Bhaskar, Thanga Bhuvanesh Vijaya A1 - Ma, Nan A1 - Lendlein, Andreas A1 - Roch, Toralf T1 - The interaction of human macrophage subsets with silicone as a biomaterial JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Silicones are widely used as biomaterials for medical devices such as extracorporeal equipments. However, there is often conflicting evidence about their supposed cell-and histocompatibility. Macrophages could mediate silicone-induced adverse responses such as foreign body reaction and fibrous encapsulation. The polarization behaviour of macrophages could determine the clinical outcome after implantation of biomaterials. Induction of classically activated macrophages (CAM) may induce and support uncontrolled inflammatory responses and undesired material degradation. In contrast, polarization into alternatively activated macrophages (AAM) is assumed to support healing processes and implant integration. This study compared the interaction of non-polarized macrophages (M0), CAM, and AAM with commercially available tissue culture polystyrene (TCP) and a medical grade silicone-based biomaterial, regarding the secretion of inflammatory mediators such as cytokines and chemokines. Firstly, by using the Limulus amoebocyte lysate (LAL) test the silicone films were shown to be free of soluble endotoxins, which is the prerequisite to investigate their interaction with primary immune cells. Primary human monocyte-derived macrophages (M0) were polarized into CAM and AAM by addition of suitable differentiation factors. These macrophage subsets were incubated on the materials for 24 hours and their viability and cytokine secretion was assessed. In comparison to TCP, cell adhesion was lower on silicone after 24 hours for all three macrophage subsets. However, compared to TCP, silicone induced higher levels of certain inflammatory and chemotactic cytokines in M0, CAM, and AAM macrophage subsets. Conclusively, it was shown that silicone has the ability to induce a pro-inflammatory state to different magnitudes dependent on the macrophage subsets. This priming of the macrophage phenotype by silicone could explain the incidence of severe foreign body complications observed in vivo. KW - Biomaterials KW - silicone KW - macrophage subsets KW - cytokines/chemokines Y1 - 2015 U6 - https://doi.org/10.3233/CH-151991 SN - 1386-0291 SN - 1875-8622 VL - 61 IS - 2 SP - 119 EP - 133 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Roch, Toralf A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polymeric inserts differing in their chemical composition as substrates for dendritic cell cultivation JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Dendritic cells (DC) contribute to immunity by presenting antigens to T cells and shape the immune response by the secretion of cytokines. Due to their immune stimulatory potential DC-based therapies are promising approaches to overcome tolerance e.g. against tumors. In order to enforce the immunogenicity of DCs, they have to be matured and activated in vitro, which requires an appropriate cell culture substrate, supporting their survival expansion and activation. Since most cell culture devices are not optimized for DC growth, it is hypothesized that polymers with certain physicochemical properties can positively influence the DC cultures. With the aim to evaluate the effects that polymers with different chemical compositions have on the survival, the activation status, and the cytokine/chemokine secretion profile of DC, their interaction with polystyrene (PS), polycarbonate (PC), poly(ether imide) (PEI), and poly(styrene-co-acrylonitrile) (PSAN)-based cell culture inserts was investigated. By using this insert system, which fits exactly into 24 well cell culture plates, effects induced from the culture dish material can be excluded. The viability of untreated DC after incubation with the different inserts was not influenced by the different inserts, whereas LPS-activatedDCshowed an increased survival after cultivation on PC, PS, and PSAN compared to tissue culture polystyrene (TCP). The activation status of DC estimated by the expression of CD40, CD80, CD83, CD86 and HLA-DR expression was not altered by the different inserts in untreated DC but slightly reduced when LPS-activated DC were cultivated on PC, PS, PSAN, and PEI compared to TCP. For each polymeric cell culture insert a distinct cytokine profile could be observed. Since inserts with different chemical compositions of the inserts did not substantially alter the behavior of DC all insert systems could be considered as alternative substrate. The observed increased survival on some polymers, which showed in contrast to TCP a hydrophobic surface, could be beneficial for certain applications such as T cell expansion and activation. KW - Biomaterials KW - dendritic cells KW - cell culture device KW - amorphous polymers Y1 - 2015 U6 - https://doi.org/10.3233/CH-152004 SN - 1386-0291 SN - 1875-8622 VL - 61 IS - 2 SP - 347 EP - 357 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Roch, Toralf A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer techniques JF - Interface : journal of the Royal Society N2 - Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour. KW - Langmuir monolayer KW - biodegradable polymers KW - air - water interface KW - protein Langmuir layers Y1 - 2017 U6 - https://doi.org/10.1098/rsif.2016.1028 SN - 1742-5689 SN - 1742-5662 VL - 14 PB - Royal Society CY - London ER - TY - JOUR A1 - Bäckemo, Johan Dag Valentin A1 - Liu, Yue A1 - Lendlein, Andreas T1 - Bio-inspired and computer-supported design of modulated shape changes in polymer materials JF - MRS communications / a publication of the Materials Research Society N2 - The Venus flytrap is a fascinating plant with a finely tuned mechanical bi-stable system, which can switch between mono- and bi-stability. Here, we combine geometrical design of compliant mechanics and the function of shape-memory polymers to enable switching between bi- and mono-stable states. Digital design and modelling using the Chained Beam Constraint Model forecasted two geometries, which were experimentally realized as structured films of cross-linked poly[ethylene-co-(vinyl acetate)] supported by digital manufacturing. Mechanical evaluation confirmed our predicted features. We demonstrated that a shape-memory effect could switch between bi- and mono-stability for the same construct, effectively imitating the Venus flytrap. KW - Additive manufacturing KW - Biomimetic KW - Shape memory KW - Modelling KW - Polymer Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00056-6 SN - 2159-6867 VL - 11 IS - 4 SP - 462 EP - 469 PB - Springer CY - Berlin ER - TY - JOUR A1 - Liu, Yue A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Shape-memory actuation of individual micro-/nanofibers JF - MRS Advances N2 - Advances in the fabrication and characterization of polymeric nanomaterials has greatly advanced the miniaturization of soft actuators, creating materials capable of replicating the functional physical behavior previously limited to the macroscale. Here, we demonstrate how a reversible shape-memory polymer actuation can be generated in a single micro/nano object, where the shape change during actuation of an individual fiber can be dictated by programming using an AFM-based method. Electrospinning was used to prepare poly(epsilon-caprolactone) micro-/nanofibers, which were fixed and crosslinked on a structured silicon wafer. The programming as well as the observation of recovery and reversible displacement of the fiber were performed by vertical three point bending, using an AFM testing platform introduced here. A plateau tip was utilized to improve the stability of the fiber contact and working distance, enabling larger deformations and greater rbSMPA performance. Values for the reversible elongation of epsilon(rev)= 3.4 +/- 0.1% and 10.5 +/- 0.1% were obtained for a single micro (d = 1.0 +/- 0.2 mu m) and nanofiber (d = 300 +/- 100 nm) in cyclic testing between the temperatures 10 and 60 degrees C. The reversible actuation of the nanofiber was successfully characterized for 10 cycles. The demonstration and characterization of individual shape-memory nano and microfiber actuators represents an important step in the creation of miniaturized robotic devices capable of performing complex physical functions at the length scale of cells and structural component of the extracellular matrix. Y1 - 2020 U6 - https://doi.org/10.1557/adv.2020.276 SN - 2059-8521 VL - 5 IS - 46-47 SP - 2391 EP - 2399 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Liu, Yue A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - On demand sequential release of (sub)micron particles controlled by size and temperature JF - Small : nano micro N2 - Polymeric devices capable of releasing submicron particles (subMP) on demand are highly desirable for controlled release systems, sensors, and smart surfaces. Here, a temperature-memory polymer sheet with a programmable smooth surface served as matrix to embed and release polystyrene subMP controlled by particle size and temperature. subMPs embedding at 80 degrees C can be released sequentially according to their size (diameter D of 200 nm, 500 nm, 1 mu m) when heated. The differences in their embedding extent are determined by the various subMPs sizes and result in their distinct release temperatures. Microparticles of the same size (D approximate to 1 mu m) incorporated in films at different programming temperatures T-p (50, 65, and 80 degrees C) lead to a sequential release based on the temperature-memory effect. The change of apparent height over the film surface is quantified using atomic force microscopy and the realization of sequential release is proven by confocal laser scanning microscopy. The demonstration and quantification of on demand subMP release are of technological impact for assembly, particle sorting, and release technologies in microtechnology, catalysis, and controlled release. KW - on demand particle release KW - temperature-memory effect KW - thermosensitive KW - polymer surface Y1 - 2022 U6 - https://doi.org/10.1002/smll.202104621 SN - 1613-6810 SN - 1613-6829 VL - 18 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Moradian, Hanieh A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Co-delivery of genes can be confounded by bicistronic vector design JF - MRS Communications N2 - Maximizing the efficiency of nanocarrier-mediated co-delivery of genes for co-expression in the same cell is critical for many applications. Strategies to maximize co-delivery of nucleic acids (NA) focused largely on carrier systems, with little attention towards payload composition itself. Here, we investigated the effects of different payload designs: co-delivery of two individual "monocistronic" NAs versus a single bicistronic NA comprising two genes separated by a 2A self-cleavage site. Unexpectedly, co-delivery via the monocistronic design resulted in a higher percentage of co-expressing cells, while predictive co-expression via the bicistronic design remained elusive. Our results will aid the application-dependent selection of the optimal methodology for co-delivery of genes. KW - Molecular KW - Packaging KW - Protein Y1 - 2022 U6 - https://doi.org/10.1557/s43579-021-00128-7 SN - 2159-6859 SN - 2159-6867 VL - 12 IS - 2 SP - 145 EP - 153 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Lendlein, Andreas A1 - Heuchel, Matthias T1 - Shape-memory polymers designed in view of thermomechanical energy storage and conversion systems BT - Effective temporary shape fixation by strain-induced formation of supramolecular nanostructures enables high energy density one-way shape-memory polymers JF - ACS central science KW - Actuators KW - Deformation KW - Energy KW - Energy storage KW - Polymers Y1 - 2021 U6 - https://doi.org/10.1021/acscentsci.1c01032 SN - 2374-7951 VL - 7 IS - 10 SP - 1599 EP - 1601 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xu, Xun A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulation of mesenchymal stem cell migration using programmable polymer sheet actuators JF - MRS advances N2 - Recruitment of mesenchymal stem cells (MSCs) to damaged tissue is a crucial step to modulate tissue regeneration. Here, the migration of human adipose-derived stem cells (hADSCs) responding to thermal and mechanical stimuli was investigated using programmable shape-memory polymer actuator (SMPA) sheets. Changing the temperature repetitively between 10 and 37 degrees C, the SMPA sheets are capable of reversibly changing between two different pre-defined shapes like an artificial muscle. Compared to non-actuating sheets, the cells cultured on the programmed actuating sheets presented a higher migration velocity (0.32 +/- 0.1 vs. 0.57 +/- 0.2 mu m/min). These results could motivate the next scientific steps, for example, to investigate the MSCs pre-loaded in organoids towards their migration potential. Y1 - 2020 U6 - https://doi.org/10.1557/adv.2020.235 SN - 2059-8521 VL - 5 IS - 46-47 SP - 2381 EP - 2390 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Wang, Weiwei A1 - Xu, Xun A1 - Li, Zhengdong A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Non-swelling hydrophobic poly(n-butyl acrylate) network (cPnBA) is a candidate material for synthetic vascular grafts owing to its low toxicity and tailorable mechanical properties. Mesenchymal stem cells (MSCs) are an attractive cell type for accelerating endothelialization because of their superior anti-thrombosis and immune modulatory function. Further, they can differentiate into smooth muscle cells or endothelial-like cells and secret pro-angiogenic factors such as vascular endothelial growth factor (VEGF). MSCs are sensitive to the substrate mechanical properties, with the alteration of their major cellular behavior and functions as a response to substrate elasticity. Here, we cultured human adipose-derived mesenchymal stem cells (hADSCs) on cPnBAs with different mechanical properties (cPnBA250, Young’s modulus (E) = 250 kPa; cPnBA1100, E = 1100 kPa) matching the elasticity of native arteries, and investigated their cellular response to the materials including cell attachment, proliferation, viability, apoptosis, senescence and secretion. The cPnBA allowed high cell attachment and showed negligible cytotoxicity. F-actin assembly of hADSCs decreased on cPnBA films compared to classical tissue culture plate. The difference of cPnBA elasticity did not show dramatic effects on cell attachment, morphology, cytoskeleton assembly, apoptosis and senescence. Cells on cPnBA250, with lower proliferation rate, had significantly higher VEGF secretion activity. These results demonstrated that tuning polymer elasticity to regulate human stem cells might be a potential strategy for constructing stem cell-based artificial blood vessels. KW - Poly(n-butyl acrylate) KW - mechanical property KW - vascular graft KW - mesenchymal stem cells KW - VEGF Y1 - 2019 U6 - https://doi.org/10.3233/CH-189418 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 277 EP - 289 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Deng, Zijun A1 - Zou, Jie A1 - Wang, Weiwei A1 - Nie, Yan A1 - Tung, Wing-Tai A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Dedifferentiation of mature adipocytes with periodic exposure to cold JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10 degrees C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37 degrees C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1 alpha, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37 degrees C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells. KW - Adipocyte KW - dedifferentiation KW - cold KW - lipid Y1 - 2019 U6 - https://doi.org/10.3233/CH-199005 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 415 EP - 424 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Nie, Yan A1 - Wang, Weiwei A1 - Xu, Xun A1 - Zou, Jie A1 - Bhuvanesh, Thanga A1 - Schulz, Burkhard A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs. KW - Polymeric substrate KW - surface coating KW - induced pluripotent stem cells KW - cell adhesion Y1 - 2019 U6 - https://doi.org/10.3233/CH-189318 SN - 1386-0291 SN - 1875-8622 VL - 70 IS - 4 SP - 531 EP - 542 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Bhuvanesh, Thanga A1 - Saretia, Shivam A1 - Roch, Toralf A1 - Schöne, Anne-Christin A1 - Rottke, Falko O. A1 - Kratz, Karl A1 - Wang, Weiwei A1 - Ma, Nan A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Langmuir-Schaefer films of fibronectin as designed biointerfaces for culturing stem cells JF - Polymers for advanced technologies N2 - Glycoproteins adsorbing on an implant upon contact with body fluids can affect the biological response in vitro and in vivo, depending on the type and conformation of the adsorbed biomacromolecules. However, this process is poorly characterized and so far not controllable. Here, protein monolayers of high molecular cohesion with defined density are transferred onto polymeric substrates by the Langmuir-Schaefer (LS) technique and were compared with solution deposition (SO) method. It is hypothesized that on polydimethylsiloxane (PDMS), a substrate with poor cell adhesion capacity, the fibronectin (FN) layers generated by the LS and SO methods will differ in their organization, subsequently facilitating differential stem cell adhesion behavior. Indeed, atomic force microscopy visualization and immunofluorescence images indicated that organization of the FN layer immobilized on PDMS was uniform and homogeneous. In contrast, FN deposited by SO method was rather heterogeneous with appearance of structures resembling protein aggregates. Human mesenchymal stem cells showed reduced absolute numbers of adherent cells, and the vinculin expression seemed to be higher and more homogenously distributed after seeding on PDMS equipped with FN by LS in comparison with PDMS equipped with FN by SO. These divergent responses could be attributed to differences in the availability of adhesion molecule ligands such as the Arg-Gly-Asp (RGD) peptide sequence presented at the interface. The LS method allows to control the protein layer characteristics, including the thickness and the protein orientation or conformation, which can be harnessed to direct stem cell responses to defined outcomes, including migration and differentiation. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - Langmuir-Schaefer method KW - protein adsorption KW - stem cell adhesion KW - cell culture KW - fibronectin Y1 - 2017 U6 - https://doi.org/10.1002/pat.3910 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1305 EP - 1311 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Saretia, Shivam A1 - Machatschek, Rainhard Gabriel A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Reversible 2D networks of oligo(epsilon-caprolactone) at the air-water interface JF - Biomedical Materials N2 - Hydroxyl terminated oligo(epsilon-caprolactone) (OCL) monolayers were reversibly cross-linked forming two dimensional networks (2D) at the air-water interface. The equilibrium reaction with glyoxal as the cross-linker is pH-sensitive. Pronounced contraction in the area of the prepared 2DOCL films in dependence of surface pressure and time revealed the process of the reaction. Cross-linking inhibited crystallization and retarded enzymatic degradation of the OCLfilm. Altering the subphase pH led to a cleavage of the covalent acetal cross-links. The reversibility of the covalent acetal cross-links was proved by observing an identical isotherm as non-cross-linked sample. Besides as model systems, these customizable reversible OCL2D networks are intended for use as pHresponsive drug delivery systems or functionalized cell culture substrates. KW - poly(epsilon-caprolactone) KW - langmuir monolayer KW - two dimensional network KW - crystallization KW - cross-linking Y1 - 2019 U6 - https://doi.org/10.1088/1748-605X/ab0cef SN - 1748-6041 SN - 1748-605X VL - 14 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - The influence of pH on the molecular degradation mechanism of PLGA JF - MRS Advances N2 - Poly[(rac-lactide)-co-glycolide] (PLGA) is used in medicine to provide mechanical support for healing tissue or as matrix for controlled drug release. The properties of this copolymer depend on the evolution of the molecular weight of the material during degradation. which is determined by the kinetics of the cleavage of hydrolysable bonds. The generally accepted description of the degradation of PLGA is a random fragmentation that is autocatalyzed by the accumulation of acidic fragments inside the bulk material. Since mechanistic studies with lactide oligomers have concluded a chain-end scission mechanism and monolayer degradation experiments with polylactide found no accelerated degradation at lower pH, we hypothesize that the impact of acidic fragments on the molecular degradation kinetics of PLGA is overestimated By means of the Langmuir monolayer degradation technique. the molecular degradation kinetics of PLGA at different pH could be determined. Protons did not catalyze the degradation of PLGA. The molecular mechanism at neutral pH and low pH is a combination of random and chainend-cut events, while the degradation under strongly alkaline conditions is determined by rapid chainend cuts. We suggest that the degradation of bulk PLGA is not catalyzed by the acidic degradation products. Instead. increased concentration of small fragments leads to accelerated mass loss via fast chain-end cut events. In the future, we aim to substantiate the proposed molecular degradation mechanism of PLGA with interfacial rheology. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.602 SN - 2059-8521 VL - 3 IS - 63 SP - 3883 EP - 3889 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Langmuir Monolayers as Tools to Study Biodegradable Polymer Implant Materials JF - Macromolecular rapid communications N2 - Langmuir monolayers provide a fast and elegant route to analyze the degradation behavior of biodegradable polymer materials. In contrast to bulk materials, diffusive transport of reactants and reaction products in the (partially degraded) material can be neglected at the air-water interface, allowing for the study of molecular degradation kinetics in experiments taking less than a day and in some cases just a few minutes, in contrast to experiments with bulk materials that can take years. Several aspects of the biodegradation behavior of polymer materials, such as the interaction with biomolecules and degradation products, are directly observable. Expanding the technique with surface-sensitive instrumental techniques enables evaluating the evolution of the morphology, chemical composition, and the mechanical properties of the degrading material in situ. The potential of the Langmuir monolayer degradation technique as a predictive tool for implant degradation when combined with computational methods is outlined, and related open questions and strategies to overcome these challenges are pointed out. KW - biomaterial characterization KW - langmuir monolayers KW - polymer degradation KW - predictive characterization tools Y1 - 2018 U6 - https://doi.org/10.1002/marc.201800611 SN - 1022-1336 SN - 1521-3927 VL - 40 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lützow, Karola A1 - Weigel, Thomas A1 - Lendlein, Andreas T1 - Solvent-based fabrication method for magnetic, shape-memory nanocomposite foams JF - MRS advances N2 - This paper presents shape-memory foams that can be temporarily fixed in their compressed state and be expanded on demand. Highly porous, nanocomposite foams were prepared from a solution of polyetherurethane with suspended nanoparticles (mean aggregate size 90 nm) which have an iron(III) oxide core with a silica shell. The polymer solution with suspended nanoparticles was cooled down to -20 degrees C in a two-stage process, which was followed by freeze-drying. The average pore size increases with decreasing concentration of nanoparticles from 158 mu m to 230 mu m while the foam porosity remained constant. After fixation of a temporary form of the nanocomposite foams, shape recovery can be triggered either by heat or by exposure to an alternating magnetic field. Compressed foams showed a recovery rate of up to 76 +/- 4% in a thermochamber at 80 degrees C, and a slightly lower recovery rate of up to 65 +/- 4% in a magnetic field. KW - composite KW - foam KW - polymer KW - magnetic KW - shape memory Y1 - 2020 U6 - https://doi.org/10.1557/adv.2019.422 SN - 2059-8521 VL - 5 IS - 14-15 SP - 785 EP - 795 PB - Cambridge Univ. Press CY - Cambridge ER - TY - JOUR A1 - Liang, Xiao A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Dihydroxy terminated teroligomers from morpholine-2,5-diones JF - European polymer journal : EPJ N2 - Oligodepsipeptides (ODPs) attract increasing attention as degradable materials in controlled drug delivery or as building blocks for nano-carriers. Their strong intermolecular interactions provide high stability. Tailoring the side groups of the amino acid repeating units to achieve a strong affinity to particular drugs allows a high drug-loading capacity. Here we describe synthesis and characterization of dihydroxy terminated teroligodepsipeptides (ter-ODPs) by ring-opening copolymerization (ROP) of three different morpholine-2,5-diones (MDs) in bulk in order to provide a set of teroligomers with structural variation for drug release or transfection. Ter-ODPs with equivalent co-monomer feed ratios were prepared as well as ter-ODPs, in which the co-monomer feed ratio was varied between 9 mol% and 78 mol%. Ter-ODPs were synthesized by ROP using 1,1,10,10-tetra-n-butyl-1,10-distanna-2,9,11,18-tetraoxa-5,6,14,15-tetrasulfur-cyclodecane (tin(IV) alkoxide) that was obtained by the reaction of dibutyl tin(II) oxide with 2-hydroxyethyl disulfide. The number average molecular weight (M-n) of ter-ODPs, determined by H-1 NMR and gel permeation chromatography (GPC), ranged between 4000 g center dot mol(-1) and 8600 g center dot mol(-1). Co-monomer compositions in ter-ODPs could be controlled by changing the feed ratio of co-monomers as observed by H-1 NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The amount of remaining monomers as determined by H-1 NMR could be kept below 1 wt%. Macrocycles as main sources of byproducts as determined from MALDI-TOF-MS measurements were significantly lower as compared to polymerization by Sn(Oct)(2). Glass-transition temperature (T-g) of ter-ODPs ranged between 59 degrees C and 70 degrees C. KW - Ring-opening polymerization KW - Tin octanoate KW - Morpholindione KW - Depsipeptide KW - Random copolymer KW - Telechel Y1 - 2021 U6 - https://doi.org/10.1016/j.eurpolymj.2020.110189 SN - 0014-3057 VL - 143 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Behl, Marc A1 - Balk, Maria A1 - Mansfeld, Ulrich A1 - Lendlein, Andreas T1 - Phase morphology of multiblock copolymers differing in sequence of blocks JF - Macromolecular materials and engineering N2 - The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. It is hypothesized that a strictly alternating sequence should impact phase segregation. A library of well-defined MBC obtained by coupling oligo(epsilon-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification results in strictly alternating (MBCalt) or random (MBCran) MBC. The three different series has a weight average molecular weight (M-w) of 65 000, 165 000, and 168 000 g mol(-1) for MBCalt and 80 500, 100 000, and 147 600 g mol(-1) for MBCran. When the chain length of OCL building blocks is increased, the tendency for phase segregation is facilitated, which is attributed to the decrease in chain mobility within the MBC. Furthermore, it is found that the phase segregation disturbs the crystallization by causing heterogeneities in the semi-crystalline alignment, which is attributed to an increase of the disorder of the OCL semi-crystalline alignment. KW - electron microscopy KW - multiblock copolymers KW - phase morphology KW - polymer KW - libraries KW - sequence structures KW - wide angle x‐ ray scattering Y1 - 2021 U6 - https://doi.org/10.1002/mame.202000672 SN - 1439-2054 VL - 306 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schmidt, Christian A1 - Behl, Marc A1 - Lendlein, Andreas A1 - Beuermann, Sabine T1 - Synthesis of high molecular weight polyglycolide in supercritical carbon dioxide JF - RSC Advances N2 - Polyglycolide (PGA) is a biodegradable polymer with multiple applications in the medical sector. Here the synthesis of high molecular weight polyglycolide by ring-opening polymerization of diglycolide is reported. For the first time stabilizer free supercritical carbon dioxide (scCO(2)) was used as a reaction medium. scCO(2) allowed for a reduction in reaction temperature compared to conventional processes. Together with the lowering of monomer concentration and consequently reduced heat generation compared to bulk reactions thermal decomposition of the product occurring already during polymerization is strongly reduced. The reaction temperatures and pressures were varied between 120 and 150 degrees C and 145 to 1400 bar. Tin(II) ethyl hexanoate and 1-dodecanol were used as catalyst and initiator, respectively. The highest number average molecular weight of 31 200 g mol(-1) was obtained in 5 hours from polymerization at 120 degrees C and 530 bar. In all cases the products were obtained as a dry white powder. Remarkably, independent of molecular weight the melting temperatures were always at (219 +/- 2)degrees C. Y1 - 2014 U6 - https://doi.org/10.1039/c4ra06815g SN - 2046-2069 VL - 4 IS - 66 SP - 35099 EP - 35105 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Nöchel, Ulrich A1 - Reddy, Chaganti Srinivasa A1 - Wang, Ke A1 - Cui, Jing A1 - Zizak, Ivo A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers N2 - Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 °C related to a broad melting transition (∼100 °C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (Tdeform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 °C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low Tdeform (<50 °C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 194 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-81124 SP - 8284 EP - 8293 ER - TY - GEN A1 - Schmidt, Christian A1 - Behl, Marc A1 - Lendlein, Andreas A1 - Bauermann, Sabine T1 - Synthesis of high molecular weight polyglycolide in supercritical carbon dioxide N2 - Polyglycolide (PGA) is a biodegradable polymer with multiple applications in the medical sector. Here the synthesis of high molecular weight polyglycolide by ring-opening polymerization of diglycolide is reported. For the first time stabilizer free supercritical carbon dioxide (scCO2) was used as a reaction medium. scCO2 allowed for a reduction in reaction temperature compared to conventional processes. Together with the lowering of monomer concentration and consequently reduced heat generation compared to bulk reactions thermal decomposition of the product occurring already during polymerization is strongly reduced. The reaction temperatures and pressures were varied between 120 and 150 °C and 145 to 1400 bar. Tin(II) ethyl hexanoate and 1-dodecanol were used as catalyst and initiator, respectively. The highest number average molecular weight of 31 200 g mol−1 was obtained in 5 hours from polymerization at 120 °C and 530 bar. In all cases the products were obtained as a dry white powder. Remarkably, independent of molecular weight the melting temperatures were always at (219 ± 2) °C. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 284 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99439 ER - TY - JOUR A1 - Nöchel, Ulrich A1 - Reddy, Chaganti Srinivasa A1 - Wang, Ke A1 - Cui, Jing A1 - Zizak, Ivo A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers JF - Journal of Materials Chemistry A, Materials for energy and sustainability N2 - Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 °C related to a broad melting transition (∼100 °C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (Tdeform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 °C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low Tdeform (<50 °C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units. Y1 - 2015 U6 - https://doi.org/10.1039/c4ta06586g SN - 2050-7488 SN - 2050-7496 VL - 16 IS - 3 SP - 8284 EP - 8293 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Melchert, Christian A1 - Yongvongsoontorn, Nunnarpas A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Synthesis and characterization of telechelic oligoethers with terminal cinnamylidene acetic acid moieties JF - Journal of applied biomaterials & functional materials N2 - Purpose: The formation of photoresponsive hydrogels were reported by irradiation of star-shaped poly(ethylene glycol)s with terminal cinnamylidene acetic acid (CAA) groups, which are capable of a photoinduced [2+2] cycloaddition. In this study we explored whether oligo(ethylene glycol) s and oligo(propylene glycol)s of varying molecular architecture (linear or star-shaped) or molecular weights could be functionalized with CAA as terminal groups by esterification or by amide formation. Methods: Oligo(ethylene glycol) (OEG) and oligo(propylene glycol) (OPG) with varying molecular architecture (linear, star-shaped) and weight average molecular weights between 1000 and 5000 g.mol(-1) were functionalized by means of esterification of hydroxyl or amine endgroups with cinnamylidene acetic acid (CAA) or cinnamylidene acetyl chloride (CAC) as telechelic endgroups. The chemical structure, thermal properties, and molecular weights of the oligoethers obtained were determined by NMR spectroscopy, UV spectroscopy, DSC, and MALDI-TOF. Results: CAA-functionalized linear and star-shaped OEGs or OPGs could be obtained with a degree of functionalization higher than 90%. In MALDI-TOF measurements an increase in Mw of about 150 g.mol(-1) (for each terminal end) after the functionalization reaction was observed. OEGCAA and OPGCAA showed an increase in glass transition temperature (T-g) from about -70 degrees C to -50 degrees C, compared to the unfunctionalized oligoethers. In addition, the melting temperature (T-m) of OEGCAA decreased from about 55 C to 30 degrees C, which can be accounted for by the hampered crystallization of the precursors because of the bulky CAA end groups as well as by the loss of the hydroxyl telechelic end groups. Conclusion: The synthesis of photoresponsive oligoethers containing cinnamylidene acetic acid as telechelic endgroup was reported and high degrees of functionalization could be achieved. Such photosensitive oligomers are promising candidates as reactive precursors, for the preparation of biocompatible high molecular weight polymers and polymer networks. KW - Biocompatible polymers KW - Cinnamylidene acetic acid KW - Photoresponsive polymers Y1 - 2012 U6 - https://doi.org/10.5301/JABFM.2012.10364 SN - 2280-8000 VL - 10 IS - 3 SP - 185 EP - 190 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Matching magnetic heating and thermal actuation for sequential coupling in hybrid composites by design JF - Macromolecular rapid communications N2 - Sequentially coupling two material functions requires matching the output from the first with the input of the second function. Here, magnetic heating controls thermal actuation of a hybrid composite in a challenging system environment causing an elevated level of heat loss. The concept is a hierarchical design consisting of an inner actuator of nanocomposite material, which can be remotely heated by exposure to an alternating magnetic field (AMF) and outer layers of a porous composite system with a closed pore morphology. These porous layers act as heat insulators and as barriers to the surrounding water. By exposure to the AMF, a local bulk temperature of 71 degrees C enables the magnetic actuation of the device, while the temperature of the surrounding water is kept below 50 degrees C. Interestingly, the heat loss during magnetic heating leads to an increase of the water phase (small volume) temperature. The temperature increase is able to sequentially trigger an adjacent thermal actuator attached to the actuator composite. In this way it could be demonstrated how the AMF is able to initiate two kinds of independent actuations, which might be interesting for robotics operating in aqueous environments. KW - artificial muscles KW - magnetosensitivity KW - nanocomposites KW - soft actuators Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900440 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Melchert, Christian A1 - Behl, Marc A1 - Nöchel, Ulrich A1 - Lendlein, Andreas T1 - Influence of Comesogens on the Thermal and Actuation Properties of 2-tert-Butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone Based Nematic Main-Chain Liquid Crystalline Elastomers JF - Macromolecular materials and engineering N2 - Although the shape-changing capabilities of LCEs hold great potential for applications ranging from micropumps to artificial muscles, customization of the LCE functionality to the applications' requirements is still a challenge. It is studied whether the orientation of NMC-LCPs and NMC-LCEs based on 2-tert-butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone can be enhanced by copolymerization with 2-methyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone or 2,6-bis[4-(4-pentenyl-oxy)-benzoyl]anthracene. An increasing content of the comonomers stabilizes the nematic phase, which enables a tailoring of T-NI for the NMC-LCP between 45 and 68 degrees C, while for the NMC-LCE T-NI ranges between 69 and 76 degrees C. In addition, NMC-LCE show an increased actuation performance. KW - elastomers KW - liquid-crystalline polymers KW - polysiloxanes KW - stimuli-sensitive polymers KW - thermal properties Y1 - 2012 U6 - https://doi.org/10.1002/mame.201200238 SN - 1438-7492 VL - 297 IS - 12 SP - 1203 EP - 1212 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Frank, Ute A1 - Koetz, Joachim A1 - Szczerba, Wojciech A1 - Lendlein, Andreas T1 - Oligo(omega-pentadecalactone) decorated magnetic nanoparticles JF - Journal of materials chemistry N2 - Hybrid magnetic nanoparticles (mgNP) with a magnetite core diameter of 10 +/- 1 nm surface functionalized with oligo(omega-pentadecalactone) (OPDL) oligomers with M-n between 1300 and 3300 g mol(-1) could be successfully prepared having OPDL grafted from 200 mg g(-1) to 2170 mg g(-1). The particles are dispersible in chloroform resulting in stable suspensions. Magnetic response against an external magnetic field proved the superparamagnetic nature of the particles with a low coercivity (B-c) value of 297 mu T. The combination of the advantageous superparamagnetism of the mgNP with the exceptional stability of OPDL makes these novel hybrid mgNP promising candidates as multifunctional building blocks for magnetic nanocomposites with tunable physical properties. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm16146j SN - 0959-9428 VL - 22 IS - 18 SP - 9237 EP - 9243 PB - Royal Society of Chemistry CY - Cambridge ER - TY - CHAP A1 - Behl, Marc A1 - Kratz, Karl A1 - Nöchel, Ulrich A1 - Sauter, Tilman A1 - Lendlein, Andreas T1 - Polymer networks capable of reversible shape-memory-effects T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2014 SN - 0065-7727 VL - 248 PB - American Chemical Society CY - Washington ER - TY - INPR A1 - Baudis, Stefan A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Smart polymers for biomedical applications T2 - Macromolecular chemistry and physics Y1 - 2014 U6 - https://doi.org/10.1002/macp.201400561 SN - 1022-1352 SN - 1521-3935 VL - 215 IS - 24 SP - 2399 EP - 2402 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Nöchel, Ulrich A1 - Reddy, Chaganti Srinivasa A1 - Wang, Ke A1 - Cui, Jing A1 - Zizak, Ivo A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 degrees C related to a broad melting transition (similar to 100 degrees C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (T-deform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 degrees C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low T-deform (<50 degrees C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units. Y1 - 2015 U6 - https://doi.org/10.1039/c4ta06586g SN - 2050-7488 SN - 2050-7496 VL - 3 IS - 16 SP - 8284 EP - 8293 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Weigel, Thomas A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - The influence of thermal treatment on the morphology in differently prepared films of a oligodepsipeptide based multiblock copolymer JF - Polymers for advanced technologies N2 - Degradable multiblock copolymers prepared from equal weight amounts of poly(epsilon-caprolactone)-diol (PCL-diol) and poly[oligo(3S-iso-butylmorpholine-2,5-dione)]-diol (PIBMD-diol), named PCL-PIBMD, provide a phase-segregated morphology. It exhibits a low melting temperature from PCL domains (T-m,T-PCL) of 382 degrees C and a high T-m,T-PIBMD of 170 +/- 2 degrees C with a glass transition temperature (T-g,T-PIBMD) at 42 +/- 2 degrees C from PIBMD domains. In this study, we explored the influence of applying different thermal treatments on the resulting morphologies of solution-cast and spin-coated PCL-PIBMD thin films, which showed different initial surface morphologies. Differential scanning calorimetry results and atomic force microscopy images after different thermal treatments indicated that PCL and PIBMD domains showed similar crystallization behaviors in 270 +/- 30 mu m thick solution-cast films as well as in 30 +/- 2 and 8 +/- 1nm thick spin-coated PCL-PIBMD films. Existing PIBMD crystalline domains highly restricted the generation of PCL crystalline domains during cooling when the sample was annealed at 180 degrees C. By annealing the sample above 120 degrees C, the PIBMD domains crystallized sufficiently and covered the free surface, which restricted the crystallization of PCL domains during cooling. The PCL domains can crystallize by hindering the crystallization of PIBMD domains via the fast vitrification of PIBMD domains when the sample was cooled/quenched in liquid nitrogen after annealing at 180 degrees C. These findings contribute to a better fundamental understanding of the crystallization mechanism of multi-block copolymers containing two crystallizable domains whereby the T-g of the higher melting domain type is in the same temperature range as the T-m of the lower melting domain type. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - multiblock copolymer KW - oligodepsipeptides KW - phase morphology KW - thermal treatments KW - crystallization behavior Y1 - 2017 U6 - https://doi.org/10.1002/pat.3953 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1339 EP - 1345 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Peng, Xingzhou A1 - Razzaq, Muhammad Yasar A1 - Lendlein, Andreas T1 - Ultrasonic Cavitation Induced Shape-Memory Effect in Porous Polymer Networks JF - Macromolecular rapid communications N2 - Inspired by the application of ultrasonic cavitation based mechanical force (CMF) to open small channels in natural soft materials (skin or tissue), it is explored whether an artificial polymer network can be created, in which shape-changes can be induced by CMF. This concept comprises an interconnected macroporous rhodium-phosphine (Rh-P) coordination polymer network, in which a CMF can reversibly dissociate the Rh-P microphases. In this way, the ligand exchange of Rh-P coordination bonds in the polymer network is accelerated, resulting in a topological rearrangement of molecular switches. This rearrangement of molecular switches enables the polymer network to release internal tension under ultrasound exposure, resulting in a CMF-induced shape-memory capability. The interconnected macroporous structure with thin pore walls is essential for allowing the CMF to effectively permeate throughout the polymer network. Potential applications of this CMF-induced shape-memory polymer can be mechanosensors or ultrasound controlled switches. Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600439 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1897 EP - 1903 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Peng, Xingzhou A1 - Balk, Maria A1 - Lendlein, Andreas T1 - Chemoresponsive Shape-Memory Effect of Rhodium-Phosphine Coordination Polymer Networks JF - Chemistry of materials : a publication of the American Chemical Society N2 - Chemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material’s structural integrity after stimulation. We explored whether covalently cross-linked metal ion–phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of the elastic properties (increase in volume and decrease of mechanical strength) of the MPN was demonstrated. This remarkable behavior motivated us to explore whether the MPN are capable of a chemoresponsive shape-memory effect. In initial experiments, shape fixity of around 60% and shape recovery of almost 90% were achieved when the MPN was exposed to Ph3P in case of rhodium. Potential applications for chemoresponsive shape-memory systems could be shapable semiconductors, e.g., for lighting or catalysts, which provide catalytic activity on demand. Y1 - 2019 U6 - https://doi.org/10.1021/acs.chemmater.9b00363 SN - 0897-4756 SN - 1520-5002 VL - 31 IS - 15 SP - 5402 EP - 5407 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mazurek-Budzyńska, Magdalena A1 - Behl, Marc A1 - Razzaq, Muhammad Yasar A1 - Nöchel, Ulrich A1 - Rokicki, Gabriel A1 - Lendlein, Andreas T1 - Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment JF - Polymer Degradation and Stability N2 - Poly(carbonate-urethane)s (PCUs) exhibit improved resistance to hydrolytic degradation and in vivo stress cracking compared to poly(ester-urethane)s and their degradation leads to lower inflammation of the surrounding tissues. Therefore, PCUs are promising implant materials and are considered for devices such as artificial heart or spine implants. In this work, the hydrolytic stability of different poly(carbonate-urethane-urea)s (PCUUs) was studied under variation of the length of hydrocarbon chain (6, 9, 10, and 12 methylene units) between the carbonate linkages in the precursors. PCUUs were synthesized from isophorone diisocyanate and oligo(alkylene carbonate) diols using the moisture-cure method. The changes of sample weight, thermal and mechanical properties, morphology, as well as the degradation products after immersion in a buffer solution (PBS, pH = 7.4) for up to 10 weeks at 37 degrees C were monitored and analyzed. In addition, mechanical properties after 20 weeks (in PBS, 37 degrees C) were investigated. The gel content was determined based on swelling experiments in chloroform. Based on the DSC analysis, slight increases of melting transitions of PCUUs were observed, which were attributed to structure reorganization related to annealing at 37 degrees C rather than to the degradation of the PCUU. Tensile strength after 20 weeks of all investigated samples remained in the range of 29-39 MPa, whereas the elongation at break e(m) decreased only slightly and remained in the range between 670 and 800%. Based on the characterization of degradation products after up to 10 weeks of immersion it was assessed that oligomers are mainly consisting of hard segments containing urea linkages, which could be assigned to hindered-urea dissociation mechanism. The investigations confirmed good resistance of PCUUs to hydrolysis. Only minor changes in the crystallinity, as well as thermal and mechanical properties were observed and depended on hydrocarbon chain length in soft segment of PCUUs. (C) 2019 Published by Elsevier Ltd. KW - Poly(carbonate-urea-urethane)s KW - Hydrolytic stability KW - Degradation Y1 - 2019 SN - 0141-3910 SN - 1873-2321 VL - 161 SP - 283 EP - 297 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zhang, Quanchao A1 - Rudolph, Tobias A1 - Benitez, Alejandro J. A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes JF - Smart materials and structures N2 - Fibrous membranes capable of dynamically responding to external stimuli are highly desirable in textiles and biomedical materials, where adaptive behavior is required to accommodate complex environmental changes. For example, the creation of fabrics with temperature-dependent moisture permeability or self-regulating membranes for air filtration is dependent on the development of materials that exhibit a reversible stimuli-responsive pore size change. Here, by imbuing covalently crosslinked poly(ε-caprolactone) (cPCL) fibrous meshes with a reversible bidirectional shape-memory polymer actuation (rbSMPA) we create a material capable of temperature-controlled changes in porosity. Cyclic thermomechanical testing was used to characterize the mechanical properties of the meshes, which were composed of randomly arranged microfibers with diameters of 2.3 ± 0.6 μm giving an average pore size of approx. 10 μm. When subjected to programming strains of εm = 300% and 100% reversible strain changes of εʹrev = 22% ± 1% and 6% ± 1% were measured, with switching temperature ranges of 10 °C–30 °C and 45 °C–60 °C for heating and cooling, respectively. The rbSMPA of cPCL fibrous meshes generated a microscale reversible pore size change of 11% ± 3% (an average of 1.5 ± 0.6 μm), as measured by scanning electron microscopy. The incorporation of a two-way shape-memory actuation capability into fibrous meshes is anticipated to advance the development and application of smart membrane materials, creating commercially viable textiles and devices with enhanced performance and novel functionality. KW - reversible shape-memory effect KW - fiber meshes KW - electrospinning Y1 - 2019 U6 - https://doi.org/10.1088/1361-665X/ab10a1 SN - 0964-1726 SN - 1361-665X VL - 28 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Quadruple-shape hydrogels JF - Smart materials and structures N2 - The capability of directed movements by two subsequent shape changes could be implemented in shape-memory hydrogels by incorporation of two types of crystallizable side chains While in non-swollen polymer networks even more directed movements could be realized, the creation of multi-shape hydrogels is still a challenge. We hypothesize that a quadruple-shape effect in hydrogels can be realized, when a swelling capacity almost independent of temperature is generated, whereby directed movements could be enabled, which are not related to swelling. In this case, entropy elastic recovery could be realized by hydrophilic segments and the fixation of different macroscopic shapes by means of three semi-crystalline side chains generating temporary crosslinks. Monomethacrylated semi-crystalline oligomers were connected as side chains in a hydrophilic polymer network via radical copolymerization. Computer assisted modelling was utilized to design a demonstrator capable of complex shape shifts by creating a casting mold via 3D printing from polyvinyl alcohol. The demonstrator was obtained after copolymerization of polymer network forming components within the mold, which was subsequently dissolved in water. A thermally-induced quadruple-shape effect was realized after equilibrium swelling of the polymer network in water. Three directed movements were successfully obtained when the temperature was continuously increased from 5 degrees C to 90 degrees C with a recovery ratio of the original shape above 90%. Hence, a thermally-induced quadruple-shape effect as new record for hydrogels was realized. Here, the temperature range for the multi-shape effect was limited by water as swelling media (0 degrees C-100 degrees C), simultaneously distinctly separated thermal transitions were required, and the overall elasticity indispensable for successive deformations was reduced as result of partially chain segment orientation induced by swelling in water. Conclusively the challenges for penta- or hexa-shape gels are the design of systems enabling higher elastic deformability and covering a larger temperature range by switching to a different solvent. KW - shape-memory KW - hydrogels KW - semi-crystalline Y1 - 2019 U6 - https://doi.org/10.1088/1361-665X/ab0e91 SN - 0964-1726 SN - 1361-665X VL - 28 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Yan, Wan A1 - Rudolph, Tobias A1 - Nöchel, Ulrich A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Reversible actuation of thermoplastic multiblock copolymers with overlapping thermal transitions of crystalline and glassy domains JF - Macromolecules : a publication of the American Chemical Society N2 - Polymeric materials possessing specific features like programmability, high deformability, and easy processability are highly desirable for creating modern actuating systems. In this study, thermoplastic shape-memory polymer actuators obtained by combining crystallizable poly(epsilon-caprolactone) (PCL) and poly(3S-isobutylmorpholin-2,5-dione) (PIBMD) segments in multiblock copolymers are described. We designed these materials according to our hypothesis that the confinement of glassy PIBMD domains present at the upper actuation temperature contribute to the stability of the actuator skeleton, especially at large programming strains. The copolymers have a phase-segregated morphology, indicated by the well-separated melting and glass transition temperatures for PIBMD and PCL, but possess a partially overlapping T-m of PCL and T-g of PIBMD in the temperature interval from 40 to 60 degrees C. Crystalline PIBMD hard domains act as strong physical netpoints in the PIBMD-PCL bulk material enabling high deformability (up to 2000%) and good elastic recoverability (up to 80% at 50 degrees C above T-m,T-PCL). In the programmed thermoplastic actuators a high content of crystallizable PCL actuation domains ensures pronounced thermoreversible shape changes upon repetitive cooling and heating. The programmed actuator skeleton, composed of PCL crystals present at the upper actuation temperature T-high and the remaining glassy PIBMD domains, enabled oriented crystallization upon cooling. The actuation performance of PIBMD-PCL could be tailored by balancing the interplay between actuation and skeleton, but also by varying the quantity of crystalline PIBMD hard domains via the copolymer composition, the applied programming strain, and the choice of T-high. The actuator with 17 mol% PIBMD showed the highest reversible elongation of 11.4% when programmed to a strain of 900% at 50 degrees C. It is anticipated that the presented thermoplastic actuator materials can be applied as modern compression textiles. Y1 - 2018 U6 - https://doi.org/10.1021/acs.macromol.8b00322 SN - 0024-9297 SN - 1520-5835 VL - 51 IS - 12 SP - 4624 EP - 4632 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Peng, Xingzhou A1 - Behl, Marc A1 - Zhang, Pengfei A1 - Mazurek-Budzynska, Magdalena A1 - Feng, Yakai A1 - Lendlein, Andreas T1 - Synthesis of Well-Defined Dihydroxy Telechelics by (Co)polymerization of Morpholine-2,5-Diones Catalyzed by Sn(IV) Alkoxide JF - Macromolecular bioscience N2 - Well-defined dihydroxy telechelic oligodepsipeptides (oDPs), which have a high application potential as building blocks for scaffold materials for tissue engineering applications or particulate carrier systems for drug delivery applications are synthesized by ring-opening polymerization (ROP) of morpholine-2,5-diones (MDs) catalyzed by 1,1,6,6-tetra-n-butyl-1,6-distanna-2,5,7,10-tetraoxacyclodecane (Sn(IV) alkoxide). In contrast to ROP catalyzed by Sn(Oct)(2), the usage of Sn(IV) alkoxide leads to oDPs, with less side products and well-defined end groups, which is crucial for potential pharmaceutical applications. A slightly faster reaction of the ROP catalyzed by Sn(IV) alkoxide compared to the ROP initiated by Sn(Oct)(2)/EG is found. Copolymerization of different MDs resulted in amorphous copolymers with T(g)s between 44 and 54 degrees C depending on the molar comonomer ratios in the range from 25% to 75%. Based on the well-defined telechelic character of the Sn(IV) alkoxide synthesized oDPs as determined by matrix-assisted laser desorption/ionization time of flight measurements, they resemble interesting building blocks for subsequent postfunctionalization or multifunctional materials based on multiblock copolymer systems whereas the amorphous oDP-based copolymers are interesting building blocks for matrices of drug delivery systems. KW - oligodepsipeptides KW - ring-opening polymerization KW - Sn(IV) alkoxide KW - telechelics KW - tin(II) 2-ethylhexanoate Y1 - 2018 U6 - https://doi.org/10.1002/mabi.201800257 SN - 1616-5187 SN - 1616-5195 VL - 18 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Hydrolytic Degradation of Actuators Based on Copolymer Networks From Oligo(epsilon-caprolactone) Dimethacrylate and n-Butyl Acrylate JF - MRS advances N2 - Shape-memory polymer actuators often contain crystallizable polyester segments. Here, the influence of accelerated hydrolytic degradation on the actuation performance in copolymer networks based on oligo(epsilon-caprolactone) dimethacrylate (OCL) and n-butyl acrylate is studied The semi-crystalline OCL was utilized as crosslinker with molecular weights of 2.3 and 15.2 kg.mol(-1) (ratio: 1:1 wt%) and n-butyl acrylate (25 wt% relative to OCL content) acted as softening agent creating the polymer main chain segments within the network architecture. The copolymer networks were programmed by 50% elongation and were degraded by means of alkaline hydrolysis utilizing sodium hydroxide solution (pH = 13). Experiments were performed in the range of the broad melting range of the actuators at 40 degrees C. The degradation of test specimen was monitored by the sample mass, which was reduced by 25 wt% within 105 d .45 degradation products, fragments of OCL with molecular masses ranging from 400 to 50.000 g.mol(-1) could be detected by NMR spectroscopy and GPC measurements. The cleavage of ester groups included in OCL segments resulted in a decrease of the melting temperature (T-m) related to the actuator domains (amorphous at the temperature of degradation) and simultaneously, the T-m associated to the skeleton domain was increased (semi-crystalline at the temperature of degradation). The alkaline hydrolysis decreased the polymer chain orientation of OCL domains until a random alignment of crystalline domains was obtained. This result was confirmed by cyclic thermomechanical actuation tests. The performance of directed movements decreased almost linearly as function of degradation time resulting in the loss of functionality when the orientation of polymer chains disappeared. Here, actuators were able to provide reversible movements until 91 d when the accelerated bulk degradation procedure using alkaline hydrolysis (pH = 13) was applied. Accordingly, a lifetime of more than one year can be guaranteed under physiological conditions (pH = 7.4) when, e.g., artificial muscles for biomimetic robots as potential application for these kind of shape-memory polymer actuators will be addressed. Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.202 SN - 2059-8521 VL - 4 IS - 21 SP - 1193 EP - 1205 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Wang, Li A1 - Razzaq, Muhammad Yasar A1 - Rudolph, Tobias A1 - Heuchel, Matthias A1 - Nöchel, Ulrich A1 - Mansfeld, Ulrich A1 - Jiang, Yi A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Reprogrammable, magnetically controlled polymeric nanocomposite actuators JF - Material horizons N2 - Soft robots and devices with the advanced capability to perform adaptive motions similar to that of human beings often have stimuli-sensitive polymeric materials as the key actuating component. The external signals triggering the smart polymers’ actuations can be transmitted either via a direct physical connection between actuator and controlling unit (tethered) or remotely without a connecting wire. However, the vast majority of such polymeric actuator materials are limited to one specific type of motion as their geometrical information is chemically fixed. Here, we present magnetically driven nanocomposite actuators, which can be reversibly reprogrammed to different actuation geometries by a solely physical procedure. Our approach is based on nanocomposite materials comprising spatially segregated crystallizable actuation and geometry determining units. Upon exposure to a specific magnetic field strength the actuators’ geometric memory is erased by the melting of the geometry determining units allowing the implementation of a new actuator shape. The actuation performance of the nanocomposites can be tuned and the technical significance was demonstrated in a multi-cyclic experiment with several hundreds of repetitive free-standing shape shifts without losing performance. Y1 - 2018 U6 - https://doi.org/10.1039/c8mh00266e SN - 2051-6347 SN - 2051-6355 VL - 5 IS - 5 SP - 861 EP - 867 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mazurek-Budzynska, Magdalena A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Shape-Memory Polymers JF - Functional Polymers N2 - Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of changing their shape on demand. A shape-memory function is a result of the polymer architecture together with the application of a specific programming procedure. Various possible mechanisms to induce the shape-memory effect (SME) can be realized, which can be based on thermal transitions of switching domains or on reversible molecular switches (e.g., supramolecular interactions, reversible covalent bonds). Netpoints, which connect the switching domains and determine the permanent shape, can be either provided by covalent bonds or by physical intermolecular interactions, such as hydrogen bonds or crystallites. This chapter reviews different ways of implementing the phenomenon of programmable changes in the polymer shape, including the one-way shape-memory effect (1-W SME), triple-and multi-shape effects (TSE/ MSE), the temperature-memory effect (TME), and reversible shape-memory effects, which can be realized in constant stress conditions (rSME), or in stress-free conditions (reversible bidirectional shape-memory effect (rbSME)). Furthermore, magnetically actuated SMPs and shape-memory hydrogels (SMHs) are described to show the potential of the SMP technology in biomedical applications and multifunctional approaches. Y1 - 2019 SN - 978-3-319-95987-0 SN - 978-3-319-95986-3 U6 - https://doi.org/10.1007/978-3-319-95987-0_18 SN - 2510-3458 SN - 2510-3466 SP - 605 EP - 663 PB - Springer CY - Cham ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities JF - MRS Advances N2 - Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magnetomechanical actuators which are based on a single crystalline domain of oligo(omega-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.123 SN - 2059-8521 VL - 4 IS - 19 SP - 1057 EP - 1065 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Farhan, Muhammad A1 - Chaudhary, Deeptangshu A1 - Nöchel, Ulrich A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)] JF - Macromolecular materials and engineering N2 - Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies. KW - artificial muscles KW - fiber actuators KW - resistive heating KW - shape‐memory polymer actuators KW - soft robotics Y1 - 2020 U6 - https://doi.org/10.1002/mame.202000579 SN - 1438-7492 SN - 1439-2054 VL - 306 IS - 2 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Thermally-induced actuation of magnetic nanocomposites based on Oligo(ω-pentadecalactone) and covalently integrated magnetic nanoparticles JF - MRS advances: a journal of the Materials Research Society (MRS) N2 - The incorporation of inorganic particles in a polymer matrix has been established as a method to adjust the mechanical performance of composite materials. We report on the influence of covalent integration of magnetic nanoparticles (MNP) on the actuation behavior and mechanical performance of hybrid nanocomposite (H-NC) based shape-memory polymer actuators (SMPA). The H-NC were synthesized by reacting two types of oligo(ω-pentadecalactone) (OPDL) based precursors with terminal hydroxy groups, a three arm OPDL (3 AOPDL, Mn = 6000 g mol•1−1 ) and an OPDL (Mn =3300 g • mol−1 ) coated magnetite nanoparticle (Ø = 10 ± 2 nm), with a diisocyanate. These H-NC were compared to the homopolymer network regarding the actuation performance, contractual stress (σcontr) as well as thermal and mechanical properties. The melting range of the OPDL crystals (ΔTm,OPDL) was shifted in homo polymer networks from 36 ºC − 76 ºC to 41ºC − 81 °C for H-NC with 9 wt% of MNP content. The actuators were explored by variation of separating temperature (Tsep), which splits the OPDL crystalline domain into actuating and geometry determining segments. Tsep was varied in the melting range of the nanocomposites and the actuation capability and contractual stress (σcontr) of the nanocomposite actuators could be adjusted. The reversible strain (εrev) was decreased from 11 ± 0.3% for homo polymer network to 3.2±0.3% for H-NC9 with 9 wt% of MNP indicating a restraining effect of the MNP on chain mobility. The results show that the performance of H-NCs in terms of thermal and elastic properties can be tailored by MNP content, however for higher reversible actuation, lower MNP contents are preferable. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.613 SN - 2059-8521 VL - 3 IS - 63 SP - 3783 EP - 3791 PB - Cambridge University Press CY - New York ER - TY - JOUR A1 - Mazurek-Budzyńska, Magdalena A1 - Behl, Marc A1 - Neumann, Richard A1 - Lendlein, Andreas T1 - 4D-actuators by 3D-printing combined with water-based curing JF - Materials today. Communications N2 - The shape and the actuation capability of state of the art robotic devices typically relies on multimaterial systems from a combination of geometry determining materials and actuation components. Here, we present multifunctional 4D-actuators processable by 3D-printing, in which the actuator functionality is integrated into the shaped body. The materials are based on crosslinked poly(carbonate-urea-urethane) networks (PCUU), synthesized in an integrated process, applying reactive extrusion and subsequent water-based curing. Actuation capability could be added to the PCUU, prepared from aliphatic oligocarbonate diol, isophorone diisocyanate (IPDI) and water, in a thermomechanical programming process. When programmed with a strain of epsilon(prog) = 1400% the PCUU networks exhibited actuation apparent by reversible elongation epsilon'(rev) of up to 22%. In a gripper a reversible bending epsilon'(rev)((be)(nd)()) in the range of 37-60% was achieved when the actuation temperature (T-high) was varied between 45 degrees C and 49 degrees C. The integration of actuation and shape formation could be impressively demonstrated in two PCUU-based reversible fastening systems, which were able to hold weights of up to 1.1 kg. In this way, the multifunctional materials are interesting candidate materials for robotic applications where a freedom in shape design and actuation is required as well as for sustainable fastening systems. KW - 4D-actuation KW - 3D-printing KW - Ink KW - Gripper KW - Fastener Y1 - 2022 U6 - https://doi.org/10.1016/j.mtcomm.2021.102966 SN - 2352-4928 VL - 30 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Peng, Xingzhou A1 - Behl, Marc A1 - Zhang, Pengfei A1 - Mazurek-Budzyńska, Magdalena A1 - Feng, Yakai A1 - Lendlein, Andreas T1 - Synthesis and characterization of multiblock poly(ester-amide-urethane)s JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - In this study, a multiblock copolymer containing oligo(3-methyl-morpholine-2, 5-dione) (oMMD) and oligo(3-sec-butyl-morpholine-2, 5-dione) (oBMD) building blocks obtained by ring-opening polymerization (ROP) of the corresponding monomers, was synthesized in a polyaddition reaction using an aliphatic diisocyanate. The multiblock copolymer (pBMD-MMD) provided a molecular weight of 40, 000 g·mol−1, determined by gel permeation chromatography (GPC). Incorporation of both oligodepsipeptide segments in multiblock copolymers was confirmed by 1H NMR and Matrix Assisted Laser Desorption/Ionization Time Of Flight Mass Spectroscopy (MALDI-TOF MS) analysis. pBMD-MMD showed two separated glass transition temperatures (61 °C and 74 °C) indicating a microphase separation. Furthermore, a broad glass transition was observed by DMTA, which can be attributed to strong physical interaction i.e. by H-bonds formed between amide, ester, and urethane groups of the investigated copolymers. The obtained multiblock copolymer is supposed to own the capability to exhibit strong physical interactions. Y1 - 2017 U6 - https://doi.org/10.1557/adv.2017.486 SN - 2059-8521 VL - 2 SP - 2551 EP - 2559 PB - Cambridge University Press CY - Cambridge ER -