TY - GEN A1 - Elsenbeer, Helmut A1 - Lack, Andreas A1 - Cassel, Keith T1 - Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia N2 - A forested first-order catchment in western Amazonia was monitored for 2 years to determine the chemical fingerprints of precipitation, throughfall, overland flow, pipe flow, soil water, groundwater, and streamflow. We used five tracers (hydrogen, calcium, magnesium, potassium, and silica) to distinguish “fast” flow paths mainly influenced by the biological subsystem from “slow” flow paths in the geochemical subsystem. The former comprise throughfall, overland flow, and pipe flow and are characterized by a high potassium/silica ratio; the latter are represented by soil water and groundwater, which have a low potassium/silica ratio. Soil water and groundwater differ with respect to calcium and magnesium. The groundwater-controlled streamflow chemistry is strongly modified by contributions from fast flow paths during precipitation events. The high potassium/silica ratio of these flow paths suggests that the storm flow response at La Cuenca is dominated by event water. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 047 KW - Chemistry of fresh water KW - Runoff and streamflow KW - Weathering Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16937 ER - TY - JOUR A1 - Wang, Feipeng A1 - Lack, Alexander A1 - Xie, Zailai A1 - Frübing, Peter A1 - Taubert, Andreas A1 - Gerhard, Reimund T1 - Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films JF - Applied physics letters N2 - Thin films of ferroelectric beta-phase poly(vinylidene fluoride) (PVDF) were spin-coated from a solution that contained small amounts of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate. A remanent polarization of 60 mC/m(2) and a quasi-static pyroelectric coefficient of 19 mu C/m(2)K at 30 degrees C were observed in the films. It is suggested that the IL promotes the formation of the beta phase through dipolar interactions between PVDF chain-molecules and the IL. The dipolar interactions are identified as Coulomb attraction between hydrogen atoms in PVDF chains and anions in IL. The strong crystallinity increase is probably caused by the same dipolar interaction as well. KW - dielectric polarisation KW - ferroelectric thin films KW - polymer films KW - pyroelectricity KW - spin coating Y1 - 2012 U6 - https://doi.org/10.1063/1.3683526 SN - 0003-6951 VL - 100 IS - 6 PB - American Institute of Physics CY - Melville ER -