TY - JOUR A1 - Sun, Fu A1 - Osenberg, Markus A1 - Dong, Kang A1 - Zhou, Dong A1 - Hilger, Andre A1 - Jafta, Charl J. A1 - Risse, Sebastian A1 - Lu, Yan A1 - Markoetter, Henning A1 - Manke, Ingo T1 - Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO2 and Li/S Battery Systems BT - Investigated by Synchrotron X-ray Phase Contrast Tomography JF - ACS energy letters / American Chemical Society N2 - Efficient Li utilization is generally considered to be a prerequisite for developing next-generation energy storage systems (ESSs). However, uncontrolled growth of Li microstructures (LmSs) during electrochemical cycling has prevented its practical commercialization. Herein, we attempt to understand the correlation of morphological evolution of Li electrodes with degrading electrochemical performances of Li/LiCoO2 and Li/S systems by synchrotron X-ray phase contrast tomography technique. It was found that the continuous transformation of the initial dense Li bulk to a porous lithium interface (PL1) structure intimately correlates with the gradually degrading overall cell performance of these two systems. Additionally, the formation mechanism of the PLI and its correlation with previously reported inwardly growing LmS and the lithium-reacted region have been intensively discussed. The information that we gain herein is complementary to previous investigations and may provide general insights into understanding of degradation mechanisms of Li metal anodes and also provide highly needed guidelines for effective design of reliable next-generation Li metal-based ESSs. Y1 - 2018 U6 - https://doi.org/10.1021/acsenergylett.7b01254 SN - 2380-8195 VL - 3 IS - 2 SP - 356 EP - 365 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schaan, Luca A1 - Schulz, Andre A1 - Nuraydin, Sevim A1 - Bergert, Cora A1 - Hilger, Annett A1 - Rach, Hannah A1 - Hechler, Tanja T1 - Interoceptive accuracy, emotion recognition, and emotion regulation in preschool children JF - International journal of psychophysiology N2 - Little is known about the conscious experience of internal bodily sensations in preschool-aged children. Given that preschoolers are in the most rapid phase of brain development, and display profound emotional development, it was the aim of the present study to establish an adapted interoceptive accuracy paradigm and to investigate associations between sociodemographic (age, sex) and emotional variables with interoceptive accuracy. Forty-nine children (aged 4–6 years) completed the jumping jack paradigm (JJP), a heartbeat tracking paradigm, which includes a noninvasive physical perturbation via performing jumping jacks for 10 s. An interoceptive accuracy score was based on the comparison between self-reported and objectively recorded heart rate prior to and after completion of jumping jacks. Children also completed validated measures for emotion recognition and emotion regulation. Children's objectively recorded heart rate significantly increased after the JJP by 20 bpm on average. There was a positive relationship between reactivity on self-reported heart rate and objectively recorded heart rate increase. The derived scores for interoceptive accuracy increased with age, suggesting older children to report more self-reported heart rate change than objectively recorded, but were unrelated to children's sex or BMI. While emotion recognition and regulation significantly increased with age, the interoceptive accuracy score was unrelated to emotion recognition, but marginally associated to emotion regulation. Children with higher interoceptive accuracy score (i.e., self-reporting more heart rate change than objectively recorded) received lower emotion regulation score. The present study is the first to depict a novel behavioral paradigm to assess interoceptive accuracy in preschool-aged children. KW - Interoception KW - Preschoolers KW - Interoceptive accuracy KW - Emotion recognition KW - Emotion regulation Y1 - 2019 U6 - https://doi.org/10.1016/j.ijpsycho.2019.02.001 SN - 0167-8760 SN - 1872-7697 VL - 138 SP - 47 EP - 56 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sun, Fu A1 - Dong, Kang A1 - Osenberg, Markus A1 - Hilger, Andre A1 - Risse, Sebastian A1 - Lu, Yan A1 - Kamm, Paul H. A1 - Klaus, Manuela A1 - Markoetter, Henning A1 - Garcia-Moreno, Francisco A1 - Arlt, Tobias A1 - Manke, Ingo T1 - Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Dynamic and direct visualization of interfacial evolution is helpful in gaining fundamental knowledge of all-solid-state-lithium battery working/degradation mechanisms and clarifying future research directions for constructing next-generation batteries. Herein, in situ and in operando synchrotron X-ray tomography and energy dispersive diffraction were simultaneously employed to record the morphological and compositional evolution of the interface of InLi-anode|sulfide-solid-electrolyte during battery cycling. Compelling morphological evidence of interfacial degradation during all-solid-state-lithium battery operation has been directly visualized by tomographic measurement. The accompanying energy dispersive diffraction results agree well with the observed morphological deterioration and the recorded electrochemical performance. It is concluded from the current investigation that a fundamental understanding of the phenomena occurring at the solid-solid electrode|electrolyte interface during all-solid-state-lithium battery cycling is critical for future progress in cell performance improvement and may determine its final commercial viability. Y1 - 2018 U6 - https://doi.org/10.1039/c8ta08821g SN - 2050-7488 SN - 2050-7496 VL - 6 IS - 45 SP - 22489 EP - 22496 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Rudolph, Nicole A1 - Esser, Hanna G. A1 - Carminati, Andrea A1 - Moradi, Ahmad B. A1 - Hilger, Andre A1 - Kardjilov, Nikolay A1 - Nagl, Stefan A1 - Oswald, Sascha T1 - Dynamic oxygen mapping in the root zone by fluorescence dye imaging combined with neutron radiography JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - The rooted zone of a soil, more precisely the rhizosphere, is a very dynamic system. Some of the key processes are water uptake and root respiration. We have developed a novel method for measuring the real-time distribution of water and oxygen concentration in the rhizosphere as a biogeochemical interface in soil. This enables understanding where and when roots are active in respect to root respiration and water uptake and how the soil responds to it. We used glass containers (15 x 15 x 1 cm), which were filled with a quartz sand mixture. Sensor foils for fluorescence dye imaging of O-2 were installed on the inner side of the containers. A lupine plant was grown in each container for 2 weeks under controlled conditions. Then we took time series of fluorescence images for time-lapsed visualization of oxygen depletion caused by root respiration. Changing water content was mapped in parallel by non-invasive neutron radiography, which yields water content distributions in high spatial resolution. Also it can detect the root system of the lupine plants. By this combined imaging of the samples, a range of water contents and different oxygen concentration levels, both induced by root activities, could be assessed. We monitored the dynamics of these vital parameters induced by roots during a period of several hours. We observed that for high water saturation, the oxygen concentration decreased in parts of the container. The accompanying neutron radiographies gave us the information that these locations are spatially correlated to roots. Therefore, it can be concluded that the observed oxygen deficits close to the roots result from root respiration and show up while re-aeration from atmosphere by gas phase transport is restricted by the high water saturation. Our coupled imaging setup was able to monitor the spatial distribution and temporal dynamics of oxygen and water content in a night and day cycle. This reflects complex plant activities such as photosynthesis, transpiration, and metabolic activities impacting the root-soil interface. Our experimental setup provides the possibility to non-invasively visualize these parameters with high resolution. The particular oxygen imaging method as well as the combination with simultaneously mapping the water content by neutron radiography is a novelty. KW - Fluorescence imaging KW - Neutron radiography KW - Oxygen mapping KW - Rhizosphere KW - Root respiration KW - Water distribution Y1 - 2012 U6 - https://doi.org/10.1007/s11368-011-0407-7 SN - 1439-0108 VL - 12 IS - 1 SP - 63 EP - 74 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Tötzke, Christian A1 - Kardjilov, Nikolay A1 - Hilger, André A1 - Rudolph-Mohr, Nicole A1 - Manke, Ingo A1 - Oswald, Sascha T1 - Three-dimensional in vivo analysis of water uptake and translocation in maize roots by fast neutron tomography JF - Scientific Reports N2 - Root water uptake is an essential process for terrestrial plants that strongly affects the spatiotemporal distribution of water in vegetated soil. Fast neutron tomography is a recently established non-invasive imaging technique capable to capture the 3D architecture of root systems in situ and even allows for tracking of three-dimensional water flow in soil and roots. We present an in vivo analysis of local water uptake and transport by roots of soil-grown maize plants—for the first time measured in a three-dimensional time-resolved manner. Using deuterated water as tracer in infiltration experiments, we visualized soil imbibition, local root uptake, and tracked the transport of deuterated water throughout the fibrous root system for a day and night situation. This revealed significant differences in water transport between different root types. The primary root was the preferred water transport path in the 13-days-old plants while seminal roots of comparable size and length contributed little to plant water supply. The results underline the unique potential of fast neutron tomography to provide time-resolved 3D in vivo information on the water uptake and transport dynamics of plant root systems, thus contributing to a better understanding of the complex interactions of plant, soil and water. KW - Environmental sciences KW - Optics and photonics KW - Plant sciences Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-90062-4 SN - 2045-2322 VL - 11 PB - Macmillan Publishers Limited CY - London ER - TY - GEN A1 - Tötzke, Christian A1 - Kardjilov, Nikolay A1 - Hilger, André A1 - Rudolph-Mohr, Nicole A1 - Manke, Ingo A1 - Oswald, Sascha T1 - Three-dimensional in vivo analysis of water uptake and translocation in maize roots by fast neutron tomography T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Root water uptake is an essential process for terrestrial plants that strongly affects the spatiotemporal distribution of water in vegetated soil. Fast neutron tomography is a recently established non-invasive imaging technique capable to capture the 3D architecture of root systems in situ and even allows for tracking of three-dimensional water flow in soil and roots. We present an in vivo analysis of local water uptake and transport by roots of soil-grown maize plants—for the first time measured in a three-dimensional time-resolved manner. Using deuterated water as tracer in infiltration experiments, we visualized soil imbibition, local root uptake, and tracked the transport of deuterated water throughout the fibrous root system for a day and night situation. This revealed significant differences in water transport between different root types. The primary root was the preferred water transport path in the 13-days-old plants while seminal roots of comparable size and length contributed little to plant water supply. The results underline the unique potential of fast neutron tomography to provide time-resolved 3D in vivo information on the water uptake and transport dynamics of plant root systems, thus contributing to a better understanding of the complex interactions of plant, soil and water. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1217 KW - Environmental sciences KW - Optics and photonics KW - Plant sciences Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-529915 SN - 1866-8372 ER - TY - JOUR A1 - Tötzke, Christian A1 - Oswald, Sascha A1 - Hilger, André A1 - Kardjilov, Nikolay T1 - Non-invasive detection and localization of microplastic particles in a sandy sediment by complementary neutron and X-ray tomography JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - Purpose Microplastics have become a ubiquitous pollutant in marine, terrestrial and freshwater systems that seriously affects aquatic and terrestrial ecosystems. Common methods for analysing microplastic abundance in soil or sediments are based on destructive sampling or involve destructive sample processing. Thus, substantial information about local distribution of microplastics is inevitably lost. Methods Tomographic methods have been explored in our study as they can help to overcome this limitation because they allow the analysis of the sample structure while maintaining its integrity. However, this capability has not yet been exploited for detection of environmental microplastics. We present a bimodal 3D imaging approach capable to detect microplastics in soil or sediment cores non-destructively. Results In a first pilot study, we demonstrate the unique potential of neutrons to sense and localize microplastic particles in sandy sediment. The complementary application of X-rays allows mineral grains to be discriminated from microplastic particles. Additionally, it yields detailed information on the 3D surroundings of each microplastic particle, which supports its size and shape determination. Conclusion The procedure we developed is able to identify microplastic particles with diameters of approximately 1 mm in a sandy soil. It also allows characterisation of the shape of the microplastic particles as well as the microstructure of the soil and sediment sample as depositional background information. Transferring this approach to environmental samples presents the opportunity to gain insights of the exact distribution of microplastics as well as their past deposition, deterioration and translocation processes. KW - Neutron imaging KW - Sediment core KW - Non-destructive analysis KW - Microplastic KW - detection KW - Shape and size Y1 - 2021 U6 - https://doi.org/10.1007/s11368-021-02882-6 SN - 1439-0108 SN - 1614-7480 VL - 21 IS - 3 SP - 1476 EP - 1487 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Ning, Jiaoyi A1 - Yu, Hongtao A1 - Mei, Shilin A1 - Schütze, Yannik A1 - Risse, Sebastian A1 - Kardjilov, Nikolay A1 - Hilger, André A1 - Manke, Ingo A1 - Bande, Annika A1 - Ruiz, Victor G. A1 - Dzubiella, Joachim A1 - Meng, Hong A1 - Lu, Yan T1 - Constructing binder- and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries JF - ChemSusChem N2 - Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g(-1) at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries. KW - electrochemistry KW - energy storage KW - lithium-sulfur batteries KW - operando KW - studies KW - organosulfur Y1 - 2022 U6 - https://doi.org/10.1002/cssc.202200434 SN - 1864-5631 SN - 1864-564X VL - 15 IS - 14 PB - Wiley CY - Weinheim ER -