TY - JOUR A1 - Ekhtiari, Nikoo A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Donner, Reik Volker T1 - Disentangling the multi-scale effects of sea-surface temperatures on global precipitation BT - a coupled networks approach JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST and P at annual scale (8-16 months) concentrate mainly over the Pacific Ocean, while the corresponding spatial patterns progressively disappear when moving toward longer time-scales. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5095565 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Agarwal, Ankit A1 - Maheswaran, Rathinasamy A1 - Marwan, Norbert A1 - Caesar, Levke A1 - Kurths, Jürgen T1 - Wavelet-based multiscale similarity measure for complex networks JF - The European physical journal : B, Condensed matter and complex systems N2 - In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson’s correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson’s correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales. KW - Statistical and Nonlinear Physics Y1 - 2018 U6 - https://doi.org/10.1140/epjb/e2018-90460-6 SN - 1434-6028 SN - 1434-6036 VL - 91 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Bronstert, Axel A1 - Agarwal, Ankit A1 - Boessenkool, Berry A1 - Crisologo, Irene A1 - Fischer, Madlen A1 - Heistermann, Maik A1 - Koehn-Reich, Lisei A1 - Andres Lopez-Tarazon, Jose A1 - Moran, Thomas A1 - Ozturk, Ugur A1 - Reinhardt-Imjela, Christian A1 - Wendi, Dadiyorto T1 - Forensic hydro-meteorological analysis of an extreme flash flood BT - the 2016-05-29 event in Braunsbach, SW Germany JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The flash-flood in Braunsbach in the north-eastern part of Baden-Wuerttemberg/Germany was a particularly strong and concise event which took place during the floods in southern Germany at the end of May/early June 2016. This article presents a detailed analysis of the hydro-meteorological forcing and the hydrological consequences of this event. A specific approach, the "forensic hydrological analysis" was followed in order to include and combine retrospectively a variety of data from different disciplines. Such an approach investigates the origins, mechanisms and course of such natural events if possible in a "near real time" mode, in order to follow the most recent traces of the event. The results show that it was a very rare rainfall event with extreme intensities which, in combination with catchment properties, led to extreme runoff plus severe geomorphological hazards, i.e. great debris flows, which together resulted in immense damage in this small rural town Braunsbach. It was definitely a record-breaking event and greatly exceeded existing design guidelines for extreme flood discharge for this region, i.e. by a factor of about 10. Being such a rare or even unique event, it is not reliably feasible to put it into a crisp probabilistic context. However, one can conclude that a return period clearly above 100 years can be assigned for all event components: rainfall, peak discharge and sediment transport. Due to the complex and interacting processes, no single flood cause or reason for the very high damage can be identified, since only the interplay and the cascading characteristics of those led to such an event. The roles of different human activities on the origin and/or intensification of such an extreme event are finally discussed. (C) 2018 Elsevier B.V. All rights reserved. KW - Flash flood analysis KW - Forensic disaster analysis KW - Radar rainfall data KW - Extreme discharge data KW - Extreme event Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.02.241 SN - 0048-9697 SN - 1879-1026 VL - 630 SP - 977 EP - 991 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Maheswaran, Rathinasamy A1 - Agarwal, Ankit A1 - Sivakumar, Bellie A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Wavelet analysis of precipitation extremes over India and teleconnections to climate indices JF - Stochastic Environmental Research and Risk Assessment N2 - Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Nino 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2-8 years) and interdecadal (8-32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Nino 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region. KW - Extreme precipitation KW - Teleconnection patterns KW - Wavelets KW - Partial wavelet coherence KW - India Y1 - 2019 U6 - https://doi.org/10.1007/s00477-019-01738-3 SN - 1436-3240 SN - 1436-3259 VL - 33 IS - 11-12 SP - 2053 EP - 2069 PB - Springer CY - New York ER - TY - JOUR A1 - Shukla, Roopam A1 - Agarwal, Ankit A1 - Sachdeva, Kamna A1 - Kurths, Jürgen A1 - Joshi, P. K. T1 - Climate change perception BT - an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas JF - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change N2 - Climate change and variability have created widespread risks for farmers’ food and livelihood security in the Himalayas. However, the extent of impacts experienced and perceived by farmers varies, as there is substantial diversity in the demographic, social, and economic conditions. Therefore, it is essential to understand how farmers with different resource-endowment and household characteristics perceive climatic risks. This study aims to analyze how farmer types perceive climate change processes and its impacts to gain insight into locally differentiated concerns by farming communities. The present study is based in the Uttarakhand state of Indian Western Himalayas. We examine farmer perceptions of climate change and how perceived impacts differ across farmer types. Primary household interviews with farming households (n = 241) were done in Chakrata and Bhikiyasian tehsil in Uttarakhand, India. In addition, annual and seasonal patterns of historical data of temperature (1951–2013) and precipitation (1901–2013) were analyzed to estimate trends and validate farmers’ perception. Using statistical methods farmer typology was constructed, and five unique farmer types are identified. Majority of respondents across all farmer types noticed a decrease in summer and winter precipitation and an increase in summer temperature. Whereas the perceptions of impacts of climate change diverged across farmer types, as specific farmer types exclusively experienced few impacts. Impact of climatic risks on household food security and income was significantly perceived stronger by low-resource-endowed subsistence farmers, whereas the landless farmer type exclusively felt impacts on the communities social bond. This deeper understanding of the differentiated perception of impacts has strong implications for agricultural and development policymaking, highlighting the need for providing flexible adaptation options rather than specific solutions to avoid inequalities in fulfilling the needs of the heterogeneous farming communities. Y1 - 2018 U6 - https://doi.org/10.1007/s10584-018-2314-z SN - 0165-0009 SN - 1573-1480 VL - 152 IS - 1 SP - 103 EP - 119 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Agarwal, Ankit A1 - Maheswaran, Rathinasamy A1 - Kurths, Jürgen A1 - Khosa, R. T1 - Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States JF - Water Resources Management N2 - Hydrologic regionalization deals with the investigation of homogeneity in watersheds and provides a classification of watersheds for regional analysis. The classification thus obtained can be used as a basis for mapping data from gauged to ungauged sites and can improve extreme event prediction. This paper proposes a wavelet power spectrum (WPS) coupled with the self-organizing map method for clustering hydrologic catchments. The application of this technique is implemented for gauged catchments. As a test case study, monthly streamflow records observed at 117 selected catchments throughout the western United States from 1951 through 2002. Further, based on WPS of each station, catchments are classified into homogeneous clusters, which provides a representative WPS pattern for the streamflow stations in each cluster. KW - Wavelet power spectrum KW - Regionalization KW - Ungauged catchments KW - K-means technique KW - Self-organizing map Y1 - 2016 U6 - https://doi.org/10.1007/s11269-016-1428-1 SN - 0920-4741 SN - 1573-1650 VL - 30 SP - 4399 EP - 4413 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Ozturk, Ugur A1 - Wendi, Dadiyorto A1 - Crisologo, Irene A1 - Riemer, Adrian A1 - Agarwal, Ankit A1 - Vogel, Kristin A1 - Andres Lopez-Tarazon, Jose A1 - Korup, Oliver T1 - Rare flash floods and debris flows in southern Germany JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Flash floods and debris flows are iconic hazards inmountainous regions with steep relief, high rainfall intensities, rapid snowmelt events, and abundant sediments. The cuesta landscapes of southern Germany hardly come to mind when dealing with such hazards. A series of heavy rainstorms dumping up to 140mm in 2 h caused destructive flash floods and debris flows in May 2016. The most severe damage occurred in the Braunsbach municipality, which was partly buried by 42,000 m(3) of boulders, gravel, mud, and anthropogenic debris from the small catchment of Orlacher Bach (similar to 6 km(2)). We analysed this event by combining rainfall patterns, geological conditions, and geomorphic impacts to estimate an average sediment yield of 14,000 t/km(2) that mostly (similar to 95%) came from some 50 riparian landslides and channel-bed incision of similar to 2 m. This specific sediment yield ranks among the top 20% globally, while the intensity-duration curve of the rainstormis similarly in the upper percentile range of storms that had triggered landslides. Compared to similar-sized catchments in the greater region hit by the rainstorms, we find that the Orlacher Bach is above the 95th percentile in terms of steepness, storm-rainfall intensity, and topographic curvatures. The flash flood transported a sediment volume equal to as much as 20-40% of the Pleistocene sediment volume stored in the Orlacher Bach fan, andmay have had several predecessors in the Holocene. River control structures from 1903 and records of a debris flow in the 1920s in a nearby catchment indicate that the local inhabitants may have been aware of the debris-flow hazards earlier. Such recurring and destructive events elude flood-hazard appraisals in humid landscapes of gentle relief, and broaden mechanistic views of how landslides and debris flows contribute to shaping small and deeply cut tributaries in the southern Germany cuesta landscape. KW - Flash flood KW - Debris flow KW - Rainfall-triggered landslide KW - Hazard KW - Germany Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.01.172 SN - 0048-9697 SN - 1879-1026 VL - 626 SP - 941 EP - 952 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Agarwal, Ankit A1 - Guntu, Ravikumar A1 - Banerjee, Abhirup A1 - Gadhawe, Mayuri Ashokrao A1 - Marwan, Norbert T1 - A complex network approach to study the extreme precipitation patterns in a river basin JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes. Y1 - 2022 U6 - https://doi.org/10.1063/5.0072520 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 1 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno A1 - Kurths, Jürgen T1 - Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach JF - Nonlinear processes in geophysics N2 - The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales. Y1 - 2017 U6 - https://doi.org/10.5194/npg-24-599-2017 SN - 1023-5809 VL - 24 SP - 599 EP - 611 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Kumar, Satish A1 - Guntu, Ravi Kumar A1 - Agarwal, Ankit A1 - Villuri, Vasant Govind Kumar A1 - Pasupuleti, Srinivas A1 - Kaushal, Deo Raj A1 - Gosian, Ashwin Kumar A1 - Bronstert, Axel T1 - Multi-objective optimization for stormwater management by green-roofs and infiltration trenches to reduce urban flooding in central Delhi JF - Journal of hydrology N2 - Urban surface runoff management via best management practices (BMP) and low impact development (LID) has earned significant recognition owing to positive environmental and ecological impacts. However, due to the complexity of the parameters involved, the estimation of LID efficiency in attenuating the urban surface runoff at the watershed scale is challenging. A planning analysis of employing Green Roofs and Infiltration Trenches as BMPs/LIDs practices for urban surface runoff control is presented in this study. A multi-objective optimization decision-making framework is established by coupling SWMM (Storm Water Management Model) with NSGA-II models to check the performance of BMPs/LIDs concerning the cost-benefit analysis of LID at the watershed scale. Two urbanized areas belonging to Central Delhi in India were used as case studies. The results showed that the SWMM model is useful in simulating optimization problems for managing urban surface runoff. The optimum scenarios efficiently minimized the urban runoff volume while maintaining the BMPs/LIDs implementation costs and size. With BMPs/LIDs implementation, the reduction in runoff volume increases as expenses increase initially; however, there is no noticeable reduction in flood volume after a certain threshold. Contrasted with the haphazard arrangement of BMPs/LIDs, the proposed approach demonstrates 22%-24% runoff reductions for the same expenditures in watershed 1 and 23%-26% in watershed 2. The result of the study provides insights into planning and management of the urban surface runoff control with LID practices. The proposed framework assists the hydrologists in optimum selection and placements of BMPs/LIDs practices to acquire the most extreme ecological advantages with the least expenses. KW - Storm water management model KW - Genetic algorithm KW - NSGA-II KW - Best management practice KW - Low impact development KW - Cost-benefit Y1 - 2022 U6 - https://doi.org/10.1016/j.jhydrol.2022.127455 SN - 0022-1694 SN - 1879-2707 VL - 606 PB - Elsevier CY - Amsterdam ER -