TY - JOUR A1 - Schimka, Selina A1 - Gordievskaya, Yulia D. A1 - Lomadze, Nino A1 - Lehmann, Maren A1 - von Klitzing, Regine A1 - Rumyantsev, Artem M. A1 - Kramarenko, Elena Yu. A1 - Santer, Svetlana T1 - Communication: Light driven remote control of microgels’ size in the presence of photosensitive surfactant: Complete phase diagram JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Here we report on a light triggered remote control of microgel size in the presence of photosensitive surfactant. The hydrophobic tail of the cationic surfactant contains azobenzene group that undergoes a reversible photo-isomerization reaction from a trans-to a cis-state accompanied by a change in the hydrophobicity of the surfactant. We have investigated light assisted behaviour and the complex formation of the microgels with azobenzene containing surfactant over the broad concentrational range starting far below and exceeding several times of the critical micelle concentration (CMC). At small surfactant concentration in solution (far below CMC), the surfactant in the trans-state accommodates within the microgel causing its compaction, while the cis-isomer desorbs out of microgel resulting in its swelling. The process of the microgel size change can be described as swelling on UV irradiation (trans-cis isomerization) and shrinking on irradiation with blue light (cis-trans isomerization). However, at the surfactant concentrations larger than CMC, the opposite behaviour is observed: the microgel swells on blue irradiation and shrinks during exposure to UV light. We explain this behaviour theoretically taking into account isomer dependent micellization of surfactant within the microgels. Published by AIP Publishing. Y1 - 2017 U6 - https://doi.org/10.1063/1.4986143 SN - 0021-9606 SN - 1089-7690 VL - 147 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Zakrevskyy, Yuriy A1 - Richter, Marcel A1 - Zakrevska, Svitlana A1 - Lomadze, Nino A1 - von Klitzing, Regine A1 - Santer, Svetlana T1 - Light-controlled reversible manipulation of microgel particle size using azobenzene-containing surfactant JF - Advanced functional materials N2 - The light-induced reversible switching of the swelling of microgel particles triggered by photo-isomerization and binding/unbinding of a photosensitive azobenzene-containing surfactant is reported. The interactions between the microgel (N-isopropylacrylamide, co-monomer: allyl acetic acid, crosslinker: N,N'-methylenebisacrylamide) and the surfactant are studied by UV-Vis spectroscopy, dynamic and electrophoretic light scattering measurements. Addition of the surfactant above a critical concentration leads to contraction/collapse of the microgel. UV light irradiation results in trans-cis isomerization of the azobenzene unit incorporated into the surfactant tail and causes an unbinding of the more hydrophilic cis isomer from the microgel and its reversible swelling. The reversible contraction can be realized by blue light irradiation that transfers the surfactant back to the more hydrophobic trans conformation, in which it binds to the microgel. The phase diagram of the surfactant-microgel interaction and transitions (aggregation, contraction, and precipitation) is constructed and allows prediction of changes in the system when the concentration of one or both components is varied. Remote and reversible switching between different states can be realized by either UV or visible light irradiation. Y1 - 2012 U6 - https://doi.org/10.1002/adfm.201200617 SN - 1616-301X VL - 22 IS - 23 SP - 5000 EP - 5009 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Richter, Marcel A1 - Zakrevskyy, Yuriy A1 - Eisele, Michael A1 - Lomadze, Nino A1 - Santer, Svetlana A1 - von Klitzing, Regine T1 - Effect of pH, co-monomer content, and surfactant structure on the swelling behavior of microgel-azobenzene-containing surfactant complex JF - Polymer : the international journal for the science and technology of polymers N2 - The contraction/swelling transition of anionic PNIPAM-co-AAA particles can be manipulated by light using interactions with cationic azobenzene-containing surfactant. In this study the influence of pH-buffers and their concentrations, the charge density (AAA content) in microgel particles as well as the spacer length of the surfactant on the complex formation between the microgel and surfactant is investigated. It is shown that the presence of pH buffer can lead to complete blocking of the interactions in such complexes and the resulting microgel contraction/swelling response. There is a clear competition between the buffer ions and the surfactant molecules interacting with microgel particles. When working in pure water solutions with fixed concentration (charge density) of microgel, the contraction/swelling of the particles is controlled only by relative concentration (charge ratio) of the surfactant and AAA groups of the microgel. Furthermore, the particle contraction is more efficient for shorter spacer length of the surfactant. The onset point of the contraction process is not affected by the surfactant hydrophobicity. This work provides new insight into the interaction between microgel particles and photo-sensitive surfactants, which offers high potential in new sensor systems. (C) 2014 Elsevier Ltd. All rights reserved. KW - Hydrogel KW - Photosensitive surfactant KW - PNIPAM Y1 - 2014 U6 - https://doi.org/10.1016/j.polymer.2014.10.027 SN - 0032-3861 SN - 1873-2291 VL - 55 IS - 25 SP - 6513 EP - 6518 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schimka, Selina A1 - Lomadze, Nino A1 - Rabe, Maren A1 - Kopyshev, Alexey A1 - Lehmann, Maren A1 - von Klitzing, Regine A1 - Rumyantsev, Artem M. A1 - Kramarenko, Elena Yu. A1 - Santer, Svetlana T1 - Photosensitive microgels containing azobenzene surfactants of different charges JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans- state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp04555c SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 108 EP - 117 PB - Royal Society of Chemistry CY - Cambridge ER -