TY - JOUR A1 - Zhou, Changsong A1 - Motter, Adilson E. A1 - Kurths, Jürgen T1 - Universality in the synchronization of weighted random networks N2 - Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters Y1 - 2006 UR - http://prl.aps.org/pdf/PRL/v96/i3/e034101 U6 - https://doi.org/10.1103/Physrevlett.96.034101 ER - TY - BOOK A1 - Osipov, Grigory V. A1 - Kurths, Jürgen A1 - Zhou, Changsong T1 - Synchronisation in Oscillatory Networks Y1 - 2007 SN - 978-3-540-71268-8 PB - Springer-Verlag CY - Berlin ER - TY - JOUR A1 - Zemanova, Lucia A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Structural and functional clusters of complex brain networks JF - Physica, D, Nonlinear phenomena N2 - Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex. KW - cortical network KW - anatomical connectivity KW - functional connectivity KW - topological community KW - dynamical cluster Y1 - 2006 U6 - https://doi.org/10.1016/j.physd.2006.09.008 SN - 0167-2789 SN - 1872-8022 VL - 224 IS - 1-2 SP - 202 EP - 212 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Resonant patterns in noisy active media N2 - We investigate noise-controlled resonant response of active media to weak periodic forcing, both in excitable and oscillatory regimes. In the excitable regime, we find that noise-induced irregular wave structures can be reorganized into frequency-locked resonant patterns by weak signals with suitable frequencies. The resonance occurs due to a matching condition between the signal frequency and the noise-induced inherent time scale of the media. m:1 resonant regions similar to the Arnold tongues in frequency locking of self-sustained oscillatory media are observed. In the self-sustained oscillatory regime, noise also controls the oscillation frequency and reshapes significantly the Arnold tongues. The combination of noise and weak signal thus could provide an efficient tool to manipulate active extended systems in experiments Y1 - 2004 SN - 1063-651X ER - TY - JOUR A1 - Gamez, A. J. A1 - Zhou, Changsong A1 - Timmermann, A. A1 - Kurths, Jürgen T1 - Nonlinear dimensionality reduction in climate data N2 - Linear methods of dimensionality reduction are useful tools for handling and interpreting high dimensional data. However, the cumulative variance explained by each of the subspaces in which the data space is decomposed may show a slow convergence that makes the selection of a proper minimum number of subspaces for successfully representing the variability of the process ambiguous. The use of nonlinear methods can improve the embedding of multivariate data into lower dimensional manifolds. In this article, a nonlinear method for dimensionality reduction, Isomap, is applied to the sea surface temperature and thermocline data in the tropical Pacific Ocean, where the El Nino-Southern Oscillation (ENSO) phenomenon and the annual cycle phenomena interact. Isomap gives a more accurate description of the manifold dimensionality of the physical system. The knowledge of the minimum number of dimensions is expected to improve the development of low dimensional models for understanding and predicting ENSO Y1 - 2004 SN - 1023-5809 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Noise-sustained and controlled synchronization of stirred excitable media by external forcing N2 - Most of the previous studies on constructive effects of noise in spatially extended systems have focused on static media, e.g., of the reaction diffusion type. Because many active chemical or biological processes occur in a fluid environment with mixing, we investigate here the interplay among noise, excitability, mixing and external forcing in excitable media advected by a chaotic flow, in a two-dimensional FitzHugh-Nagumo model described by a set of reaction- advection-diffusion equations. In the absence of external forcing, noise may generate sustained coherent oscillations of the media in a range of noise intensities and stirring rates. We find that these noise-sustained oscillations can be synchronized by external periodic signals much smaller than the threshold. Analysis of the locking regions in the parameter space of the signal period, stirring rate and noise intensity reveals that the mechanism underlying the synchronization behaviour is a matching between the time scales of the forcing signal and the noise-sustained oscillations. The results demonstrate that, in the presence of a suitable level of noise, the stirred excitable media act as self-sustained oscillatory systems and become much easier to be entrained by weak external forcing. Our results may be verified in experiments and are useful to understand the synchronization of population dynamics of oceanic ecological systems by annual cycles Y1 - 2005 SN - 1367-2630 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Noise-induced phase synchronization and synchronization transitions in chaotic oscillators Y1 - 2002 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen A1 - Kiss, Istvan Z. A1 - Hudson, J. L. T1 - Noise-enhanced phase synchronization of chaotic oscillators Y1 - 2002 ER - TY - JOUR A1 - Motter, Adilson E. A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Network synchronization, diffusion, and the paradox of heterogeneity N2 - Many complex networks display strong heterogeneity in the degree (connectivity) distribution. Heterogeneity in the degree distribution often reduces the average distance between nodes but, paradoxically, may suppress synchronization in networks of oscillators coupled symmetrically with uniform coupling strength. Here we offer a solution to this apparent paradox. Our analysis is partially based on the identification of a diffusive process underlying the communication between oscillators and reveals a striking relation between this process and the condition for the linear stability of the synchronized states. We show that, for a given degree distribution, the maximum synchronizability is achieved when the network of couplings is weighted and directed and the overall cost involved in the couplings is minimum. This enhanced synchronizability is solely determined by the mean degree and does not depend on the degree distribution and system size. Numerical verification of the main results is provided for representative classes of small-world and scale-free networks Y1 - 2005 SN - 1063-651X ER - TY - JOUR A1 - Baptista, Murilo da Silva A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Information transmission in phase synchronous chaotic arrays N2 - We show many versatile phase synchronous configurations that emerge in an array of coupled chaotic elements due to the presence of a periodic stimulus. Then, we explain the relevance of these configurations to the understanding of how information about such a. stimulus is transmitted from one side to the other in this array. The stimulus actively creates the ways to be transmitted, by making the chaotic elements to phase synchronize Y1 - 2006 UR - http://iopscience.iop.org/0256-307X/ U6 - https://doi.org/10.1088/0256-307X/23/3/010 SN - 0256-307X ER -