TY - JOUR A1 - Zheng, Ju-Sheng A1 - Luan, Jian'an A1 - Sofianopoulou, Eleni A1 - Imamura, Fumiaki A1 - Stewart, Isobel D. A1 - Day, Felix R. A1 - Pietzner, Maik A1 - Wheeler, Eleanor A1 - Lotta, Luca A. A1 - Gundersen, Thomas E. A1 - Amiano, Pilar A1 - Ardanaz, Eva A1 - Chirlaque, Maria-Dolores A1 - Fagherazzi, Guy A1 - Franks, Paul W. A1 - Kaaks, Rudolf A1 - Laouali, Nasser A1 - Mancini, Francesca Romana A1 - Nilsson, Peter M. A1 - Onland-Moret, N. Charlotte A1 - Olsen, Anja A1 - Overvad, Kim A1 - Panico, Salvatore A1 - Palli, Domenico A1 - Ricceri, Fulvio A1 - Rolandsson, Olov A1 - Spijkerman, Annemieke M. W. A1 - Sanchez, Maria-Jose A1 - Schulze, Matthias Bernd A1 - Sala, Nuria A1 - Sieri, Sabina A1 - Tjonneland, Anne A1 - Tumino, Rosario A1 - van der Schouw, Yvonne T. A1 - Weiderpass, Elisabete A1 - Riboli, Elio A1 - Danesh, John A1 - Butterworth, Adam S. A1 - Sharp, Stephen J. A1 - Langenberg, Claudia A1 - Forouhi, Nita G. A1 - Wareham, Nicholas J. T1 - Plasma vitamin C and type 2 diabetes BT - genome-wide association study and Mendelian randomization analysis in European populations JF - Diabetes care N2 - OBJECTIVE: Higher plasma vitamin C levels are associated with lower type 2 diabetes risk, but whether this association is causal is uncertain. To investigate this, we studied the association of genetically predicted plasma vitamin C with type 2 diabetes. RESEARCH DESIGN AND METHODS: We conducted genome-wide association studies of plasma vitamin C among 52,018 individuals of European ancestry to discover novel genetic variants. We performed Mendelian randomization analyses to estimate the association of genetically predicted differences in plasma vitamin C with type 2 diabetes in up to 80,983 case participants and 842,909 noncase participants. We compared this estimate with the observational association between plasma vitamin C and incident type 2 diabetes, including 8,133 case participants and 11,073 noncase participants. RESULTS: We identified 11 genomic regions associated with plasma vitamin C (P < 5 x 10(-8)), with the strongest signal at SLC23A1, and 10 novel genetic loci including SLC23A3, CHPT1, BCAS3, SNRPF, RER1, MAF, GSTA5, RGS14, AKT1, and FADS1. Plasma vitamin C was inversely associated with type 2 diabetes (hazard ratio per SD 0.88; 95% CI 0.82, 0.94), but there was no association between genetically predicted plasma vitamin C (excluding FADS1 variant due to its apparent pleiotropic effect) and type 2 diabetes (1.03; 95% CI 0.96, 1.10). CONCLUSIONS: These findings indicate discordance between biochemically measured and genetically predicted plasma vitamin C levels in the association with type 2 diabetes among European populations. The null Mendelian randomization findings provide no strong evidence to suggest the use of vitamin C supplementation for type 2 diabetes prevention. Y1 - 2020 U6 - https://doi.org/10.2337/dc20-1328 SN - 0149-5992 SN - 1935-5548 VL - 44 IS - 1 SP - 98 EP - 106 PB - American Diabetes Association CY - Alexandria ER - TY - JOUR A1 - Dietrich, Stefan A1 - Jacobs, Simone A1 - Zheng, Ju-Sheng A1 - Meidtner, Karina A1 - Schwingshackl, Lukas A1 - Schulze, Matthias Bernd T1 - Gene-lifestyle interaction on risk of type 2 diabetes BT - A systematic review JF - Obesity reviews : an official journal of the International Association for the Study of Obesity N2 - The pathophysiological influence of gene-lifestyle interactions on the risk to develop type 2 diabetes (T2D) is currently under intensive research. This systematic review summarizes the evidence for gene-lifestyle interactions regarding T2D incidence. MEDLINE, EMBASE, and Web of Science were systematically searched until 31 January 2019 to identify publication with (a) prospective study design; (b) T2D incidence; (c) gene-diet, gene-physical activity, and gene-weight loss intervention interaction; and (d) population who are healthy or prediabetic. Of 66 eligible publications, 28 reported significant interactions. A variety of different genetic variants and dietary factors were studied. Variants at TCF7L2 were most frequently investigated and showed interactions with fiber and whole grain on T2D incidence. Further gene-diet interactions were reported for, eg, a western dietary pattern with a T2D-GRS, fat and carbohydrate with IRS1 rs2943641, and heme iron with variants of HFE. Physical activity showed interaction with HNF1B, IRS1, PPAR gamma, ADRA2B, SLC2A2, and ABCC8 variants and weight loss interventions with ENPP1, PPAR gamma, ADIPOR2, ADRA2B, TNF alpha, and LIPC variants. However, most findings represent single study findings obtained in European ethnicities. Although some interactions have been reported, their conclusiveness is still low, as most findings were not yet replicated across multiple study populations. KW - diet KW - gene-lifestyle interaction KW - incident type 2 diabetes KW - physical activity KW - weight loss intervention Y1 - 2019 U6 - https://doi.org/10.1111/obr.12921 SN - 1467-7881 SN - 1467-789X VL - 20 IS - 11 SP - 1557 EP - 1571 PB - Wiley CY - Hoboken ER -