TY - JOUR A1 - Baumgartner, Jens A1 - Lesevic, Paul A1 - Kumari, Monika A1 - Halbmair, Karin A1 - Bennet, Mathieu A1 - Koernig, Andre A1 - Widdrat, Marc A1 - Andert, Janet A1 - Wollgarten, Markus A1 - Bertinetti, Luca A1 - Strauch, Peter A1 - Hirt, Ann A1 - Faivre, Damien T1 - From magnetotactic bacteria to hollow spirilla-shaped silica containing a magnetic chain JF - RSC Advances N2 - Magnetotactic bacteria produce chains of magnetite nanoparticles, which are called magnetosomes and are used for navigational purposes. We use these cells as a biological template to prepare a hollow hybrid material based on silica and magnetite, and show that the synthetic route is nondestructive as the material conserves the cell morphology as well as the alignment of the magnetic particles. The hybrid material can be resuspended in aqueous solution, and can be shown to orient itself in an external magnetic field. We anticipate that chemical modification of the silica can be used to functionalize the material surface in order to obtain multifunctional materials with specialized applications, e.g. targeted drug delivery. Y1 - 2012 U6 - https://doi.org/10.1039/c2ra20911j SN - 2046-2069 VL - 2 IS - 21 SP - 8007 EP - 8009 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Guiet, Amandine A1 - Unmüssig, Tobias A1 - Göbel, Caren A1 - Vainio, Ulla A1 - Wollgarten, Markus A1 - Driess, Matthias A1 - Schlaad, Helmut A1 - Polte, Jörg A1 - Fischer, Anna T1 - Yolk@Shell Nanoarchitectures with Bimetallic Nanocores - Synthesis and Electrocatalytic Applications JF - Earth & planetary science letters KW - AgAu alloy nanoparticles KW - tin-rich ITO KW - yolk@shell materials KW - nanoreactor KW - soft-templating KW - inverse micelles KW - polystyrene-block-poly(4-vinylpyridine) Y1 - 2016 U6 - https://doi.org/10.1021/acsami.6b06595 SN - 1944-8244 VL - 8 SP - 28019 EP - 28029 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nanowires filled with metal nanoparticles JF - Scientific reports N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-08153-0 SN - 2045-2322 VL - 7 PB - Springer Nature CY - London ER - TY - GEN A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nanowires filled with metal nanoparticles N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 387 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402712 ER - TY - JOUR A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nano-wires filled with metal nano-particles JF - Scientific reports N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro-or macroscale elements is hampered by the lack of structural components that have both, nano-and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-08153-0 SN - 2045-2322 VL - 7 SP - 3759 EP - 3764 PB - Nature Publ. Group CY - London ER -