TY - JOUR A1 - Qiu, Xunlin A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Polarization and Hysteresis in Tubular-Channel Fluoroethylenepropylene-Copolymer Ferroelectrets JF - Ferroelectrics N2 - Polarization-vs.-applied-voltage hysteresis curves are recorded on tubular-channel fluoroethylene-propylene (FEP) copolymer ferroelectrets by means of a modified Sawyer-Tower circuit. Dielectric barrier discharges (DBDs) inside the cavities are triggered when the applied voltage is sufficiently high. During the DBDs, the cavities become man-made macroscopic dipoles which build up an effective polarization in the ferroelectret. Therefore, a phenomenological hysteresis curve is observed. From the hysteresis loop, the remanent polarization and the coercive field can be determined. Furthermore, the polarization can be related to the respective piezoelectric coefficient of the ferroelectret. The proposed method is easy to implement and is useful for characterization, further development and optimization of ferro- or piezoelectrets. KW - Ferroelectrets KW - piezoelectrets KW - tubular-channel polymer systems KW - dielectric barrier discharge (DBD) KW - fluoroethylenepropylene (FEP) copolymer KW - piezoelectricity-polarization relation Y1 - 2014 U6 - https://doi.org/10.1080/00150193.2014.964603 SN - 0015-0193 SN - 1563-5112 VL - 472 IS - 1 SP - 100 EP - 109 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Altafim, Ruy Alberto Pisani A1 - Rychkov, Dmitry A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Basso, Heitor Cury A1 - Altafim, Ruy Alberto Pisani A1 - Melzer, Martin T1 - Laminated tubular-channel ferroelectret systems from low-density Polyethylene Films and from Fluoroethylene-propylene Copolymer Films - A comparison JF - IEEE transactions on dielectrics and electrical insulation N2 - A template-based lamination technique for the manufacture of ferroelectrets from uniform electret films was recently reported. In the present work, this technique is used to prepare similar ferroelectret structures from low-density polyethylene (LDPE) films and from fluoro-ethylene-propylene (FEP) copolymer films. A comparative analysis of the pressure-, temperature-, and frequency-dependent piezoelectric properties has been performed on the two ferroelectret systems. It is observed that the FEP ferroelectrets exhibit better piezoelectric responses and are thermally more stable. The difference between the piezoelectric d(33) coefficients of the two ferroelectret systems is partially explained here by their different elastic moduli. The anti-resonance peaks of both structures have been investigated by means of dielectric resonance spectroscopy and electroacoustic sound-pressure measurements. A difference of more than 10 kHz is observed between the anti-resonance frequencies of the two ferroelectret systems. KW - Ferroelectrets KW - piezoelectrets KW - piezoelectricity KW - electro-mechanical transducers KW - static-pressure dependence KW - temperature dependence KW - frequency response Y1 - 2012 SN - 1070-9878 VL - 19 IS - 4 SP - 1116 EP - 1123 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER -