TY - JOUR A1 - Basso, Heitor Cury A1 - Altafim, Ruy Alberto Pisani A1 - Altafim, Ruy Alberto Pisani A1 - Mellinger, Axel A1 - Fang, Peng A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Three-layer ferroelectrets from perforated Teflon-PTFE films fused between two homogeneous Teflon-FEP films Y1 - 2007 SN - 978-1-4244-1482-6 ER - TY - JOUR A1 - Flores Suárez, Rosaura A1 - Ganesan, Lakshmi Meena A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Mellinger, Axel T1 - Imaging liquid crystals dispersed in a ferroelectric polymer matrix by means of thermal-pulse tomography N2 - A new arrangement of the optical elements in a Thermal-Pulse-Tomography (TPT) setup allows to scan micrometer structures in composite and heterogeneous samples such as polymer-dispersed liquid crystals (PDLCs). The non-destructive TPT technique allows the determination of three-dimensional profiles of polarization and space charge in dielectrics. The samples under study were 12 mu m thick films of a copolymer of vinylidene fluoride with trifluoroethylene P(VDF- TrFE) (65/35) with embedded liquid-crystal droplets. The poling process was performed in direct contact well above the coercive field of the copolymer. The 3D map obtained from scanning with a 10 mu m wide spot shows elliptically shaped areas with liquid-crystal droplets. Considering the droplets as oblate spheroids, their major axis lies in the x-y plane, while their minor axis in the z direction measures 0.5 mu m or more. This result is in good agreement with scanning electron micrographs. It is believed that the major axis is overestimated due to imaging of liquid-crystal clusters. Y1 - 2010 UR - http://ieeexplore.ieee.org/servlet/opac?punumber=94 U6 - https://doi.org/10.1109/TDEI.2010.5539683 SN - 1070-9878 ER - TY - JOUR A1 - Flores Suárez, Rosaura A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Singh, Rajeev T1 - Thermal-pulse tomography of polarization distributions in a cylindrical geometry JF - IEEE transactions on dielectrics and electrical insulation N2 - Fast, three-dimensional polarization mapping in piezoelectric sensor cables was performed by means of the novel thermal-pulse tomography (TPT) technique with a lateral resolution of 200 mum. The active piezoelectric cable material (a copolymer of polyvinylidene fluoride with trifluoroethylene) was electrically poled with a point-to-cable corona discharge. A focused laser was employed to heat the opaque outer electrode, and the short-circuit current generated by the thermal pulse was used to obtain 3D polarization maps via the scale transformation method. The article describes the TPT technique as a fast non-destructive option for studying cylindrical geometries. Y1 - 2006 U6 - https://doi.org/10.1109/TDEI.2006.258210 SN - 1070-9878 VL - 13 IS - 5 SP - 1030 EP - 1035 PB - IEEE CY - Piscataway ER - TY - JOUR A1 - Mellinger, Axel A1 - Flores Suárez, Rosaura A1 - Singh, Rajeev A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Zerstörungsfreie Tomographie von Raumladungs- und Polarisationsverteilungen mittles Wärmepulsen N2 - Non-destructive, three-dimensional imaging of space-charge and polarization distributions in electret materials has been implemented by means of laser-induced thermal pulses. In pyroelectric films of poled poly(vinylidene fluoride), images of up to 45 x 45 pixels with a depth resolution of less than 0.5 mu m and a lateral resolution of 40 mu m were recorded, the latter being limited by fast thermal diffusion in the absorbing metallic front electrode. Initial applications include the analysis of polarization distributions in corona-poled piezoelectric sensor cables and the detection of patterned space-charge distributions in polytetrafluoroethylene films. Y1 - 2007 UR - http://www.oldenbourg-link.com/loi/teme U6 - https://doi.org/10.1524/teme.2007.74.9.437 SN - 0171-8096 ER - TY - JOUR A1 - Mellinger, Axel A1 - Flores Suárez, Rosaura A1 - Singh, Rajeev A1 - Wegener, Michael A1 - Wirges, Werner A1 - Lang, Sidney B. A1 - Gerhard, Reimund T1 - High-resolution space-charge and polarization tomography with thermal pulses N2 - Die Arbeit wurde am 13.03.2006 mit dem "BEST PAPER AWARD" des deutschen IEEE Instrumentation and Measurement (I&M) Chapter ausgezeichnet. Y1 - 2006 SN - 3-8007-2939-3 ER - TY - JOUR A1 - Mellinger, Axel A1 - Singh, Rajeev A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Lang, Sidney B. T1 - Three-dimensional mapping of polarization profiles with thermal pulses N2 - High-resolution, large-area three-dimensional mapping of polarization profiles in electret polymers was carried out by means of a fast thermal pulse technique with a focused laser beam. A lateral resolution of 38 mu m and a near- surface depth resolution of less than 0.5 mu m was achieved. At larger depths, fast thermal diffusion in the metal electrode rather than the laser spot size becomes the limiting factor for the lateral resolution. (c) 2005 American Institute of Physics Y1 - 2005 SN - 0003-6951 ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Thermally stable dynamic piezoelectricity in sandwich films of porous and non-porous amorphous fluoropolymer Y1 - 2001 ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Mallepally, Rajendar Reddy A1 - Gerhard, Reimund T1 - Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites N2 - Ferroelectrets are thin films of polymer foams, exhibiting piezoelectric properties after electrical charging. Ferroelectret foams usually consist of a cellular polymer structure filled with air. Polymer-air composites are elastically soft due to their high air content as well as due to the size and shape of the polymer walls. Their elastically soft composite structure is one essential key for the working principle of ferroelectrets, besides the permanent trapping of electric charges inside the polymer voids. The elastic properties allow large deformations of the electrically charged voids. However, the composite structure can also possibly limit the stability and consequently the range of applications because of, e. g., penetration of gas and liquids accompanied by discharge phenomena or because of a mechanical pre-load which may be required during the application. Here, we discuss various stability aspects related to the piezoelectric properties of polypropylene ferroelectrets. Near and below room temperature, the piezoelectric effect and the stability of the trapped charges are practically independent from humidity during long-time storage in a humid atmosphere or water, or from operating conditions, such as continuous mechanical excitation. Thermal treatment of cellular polypropylene above -10 degrees C leads to a softening of the voided structure which is apparent from the decreasing values of the elastic modulus. This decrease results in an increase of the piezoelectric activity. Heating above 60 degrees C, however, leads to a decrease in piezoelectricity Y1 - 2006 ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Mallepally, Rajendar Reddy A1 - Gerhard, Reimund T1 - Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites Y1 - 2006 ER - TY - JOUR A1 - Pham, Cong Duc A1 - Petre, Anca A1 - Berquez, Laurent A1 - Flores Suárez, Rosaura A1 - Mellinger, Axel A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - 3D high-resolution mapping of polarization profiles in thin poly(vinylidenefluoride-trifluoroethylene) (PVDF- TrFE) films using two thermal techniques N2 - In this paper, two non-destructive thermal methods are used in order to determine, with a high degree of accuracy, three-dimensional polarization distributions in thin films (12 mu m) of poly(vinylidenefluoride- trifluoroethylene) (PVDF-TrFE). The techniques are the frequency-domain Focused Laser Intensity Modulation Method (FLIMM) and time-domain Thermal-Pulse Tomography (TPT). Samples were first metalized with grid-shaped electrode and poled. 3D polarization mapping yielded profiles which reproduce the electrode-grid shape. The polarization is not uniform across the sample thickness. Significant polarization values are found only at depths beyond 0.5 mu m from the sample surface. Both methods provide similar results, TPT method being faster, whereas the FLIMM technique has a better lateral resolution. Y1 - 2009 UR - http://ieeexplore.ieee.org/servlet/opac?punumber=94 U6 - https://doi.org/10.1109/TDEI.2009.5128505 SN - 1070-9878 ER -