TY - GEN A1 - Wiemers, Michael A1 - Bekkering, Harold A1 - Lindemann, Oliver T1 - Two attributes of number meaning BT - numerical associations with visual space and size exist in parallel T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Many studies demonstrated interactions between number processing and either spatial codes (effects of spatial-numerical associations) or visual size-related codes (size-congruity effect). However, the interrelatedness of these two number couplings is still unclear. The present study examines the simultaneous occurrence of space- and size-numerical congruency effects and their interactions both within and across trials, in a magnitude judgment task physically small or large digits were presented left or right from screen center. The reaction times analysis revealed that space- and size-congruency effects coexisted in parallel and combined additively. Moreover, a selective sequential modulation of the two congruency effects was found. The size-congruency effect was reduced after size incongruent trials. The space-congruency effect, however, was only affected by the previous space congruency. The observed independence of spatial-numerical and within magnitude associations is interpreted as evidence that the two couplings reflect Different attributes of numerical meaning possibly related to orginality and cardinality. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 587 KW - gratton effect KW - shared magnitude representation KW - size-congruity effect KW - spatial-numerical associations KW - number processing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-433566 SN - 1866-8364 IS - 587 SP - 253 EP - 261 ER - TY - JOUR A1 - Wiemers, Michael A1 - Bekkering, Harold A1 - Lindemann, Oliver T1 - Two attributes of number meaning BT - numerical associations with visual space and size exist in parallel JF - Experimental Psychology N2 - Many studies demonstrated interactions between number processing and either spatial codes (effects of spatial-numerical associations) or visual size-related codes (size-congruity effect). However, the interrelatedness of these two number couplings is still unclear. The present study examines the simultaneous occurrence of space- and size-numerical congruency effects and their interactions both within and across trials, in a magnitude judgment task physically small or large digits were presented left or right from screen center. The reaction times analysis revealed that space- and size-congruency effects coexisted in parallel and combined additively. Moreover, a selective sequential modulation of the two congruency effects was found. The size-congruency effect was reduced after size incongruent trials. The space-congruency effect, however, was only affected by the previous space congruency. The observed independence of spatial-numerical and within magnitude associations is interpreted as evidence that the two couplings reflect Different attributes of numerical meaning possibly related to orginality and cardinality. KW - Gratton effect KW - shared magnitude representation KW - size-congruity effect KW - spatial-numerical associations KW - number processing Y1 - 2017 U6 - https://doi.org/10.1027/1618-3169/a000366 SN - 1618-3169 SN - 2190-5142 VL - 64 IS - 4 SP - 253 EP - 261 PB - Hogrefe CY - Göttingen ER - TY - JOUR A1 - Wiemers, Michael A1 - Bekkering, Harold A1 - Lindemann, Oliver T1 - Is more always up? BT - evidence for a preference of hand-based associations over vertical number mappings JF - Journal of cognitive psychology N2 - It has been argued that the association of numbers and vertical space plays a fundamental role for the understanding of numerical concepts. However, convincing evidence for an association of numbers and vertical bimanual responses is still lacking. The present study tests the vertical Spatio-Numerical-Association-of-Response-Codes (SNARC) effect in a number classification task by comparing anatomical hand-based and spatial associations. A mixed effects model of linear spatial-numerical associations revealed no evidence for a vertical but clear support for an anatomical SNARC effect. Only if the task requirements prevented participants from using a number-hand association due to frequently alternating hand-to-button assignments, numbers were associated with the vertical dimension. Taken together, the present findings question the importance of vertical associations for the conceptual understanding of numerical magnitude as hypothesised by some embodied approaches to number cognition and suggest a preference for ego-over geocentric reference frames for the mapping of numbers onto space. KW - SNARC effect KW - embodied numerosity KW - numerical cognition Y1 - 2017 U6 - https://doi.org/10.1080/20445911.2017.1302451 SN - 2044-5911 SN - 2044-592X VL - 29 IS - 5 SP - 642 EP - 652 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Wiemers, Michael A1 - Bekkering, Harold A1 - Lindemann, Oliver T1 - Spatial interferences in mental arithmetic: Evidence from the motion-arithmetic compatibility effect JF - The quarterly journal of experimental psychology N2 - Recent research on spatial number representations suggests that the number space is not necessarily horizontally organized and might also be affected by acquired associations between magnitude and sensory experiences in vertical space. Evidence for this claim is, however, controversial. The present study now aims to compare vertical and horizontal spatial associations in mental arithmetic. In Experiment 1, participants solved addition and subtraction problems and indicated the result verbally while moving their outstretched right arm continuously left-, right-, up-, or downwards. The analysis of the problem-solving performances revealed a motion-arithmetic compatibility effect for spatial actions along both the horizontal and the vertical axes. Performances in additions was impaired while making downward compared to upward movements as well as when moving left compared to right and vice versa in subtractions. In Experiment 2, instead of being instructed to perform active body movements, participants calculated while the problems moved in one of the four relative directions on the screen. For visual motions, only the motion-arithmetic compatibility effect for the vertical dimension could be replicated. Taken together, our findings provide first evidence for an impact of spatial processing on mental arithmetic. Moreover, the stronger effect of the vertical dimension supports the idea that mental calculations operate on representations of numerical magnitude that are grounded in a vertically organized mental number space. KW - Mental arithmetic KW - Numerical cognition KW - Spatial-numerical associations KW - Embodied cognition Y1 - 2014 U6 - https://doi.org/10.1080/17470218.2014.889180 SN - 1747-0218 SN - 1747-0226 VL - 67 IS - 8 SP - 1557 EP - 1570 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Wiemers, Michael A1 - Fischer, Martin H. T1 - Effects of hand proximity and movement direction in spatial and temporal gap discrimination T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 428 KW - attention KW - perception and action KW - two visual systems KW - visual perception KW - movement preparation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406568 IS - 428 ER - TY - JOUR A1 - Wiemers, Michael A1 - Fischer, Martin H. T1 - Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination JF - Frontiers in psychology KW - attention KW - perception and action KW - two visual systems KW - visual perception KW - movement preparation Y1 - 2016 U6 - https://doi.org/10.3389/fpsyg.2016.01930 SN - 1664-1078 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER -