TY - JOUR A1 - Teshebaeva, Kanayim A1 - Roessner, Sigrid A1 - Echtler, Helmut Peter A1 - Motagh, Mahdi A1 - Wetzel, Hans-Ulrich A1 - Molodbekov, Bolot T1 - ALOS/PALSAR InSAR Time-Series Analysis for Detecting Very Slow-Moving Landslides in Southern Kyrgyzstan JF - Remote sensing N2 - This study focuses on evaluating the potential of ALOS/PALSAR time-series data to analyze the activation of deep-seated landslides in the foothill zone of the high mountain Alai range in the southern Tien Shan (Kyrgyzstan). Most previous field-based landslide investigations have revealed that many landslides have indicators for ongoing slow movements in the form of migrating and newly developing cracks. L-band ALOS/PALSAR data for the period between 2007 and 2010 are available for the 484 km(2) area in this study. We analyzed these data using the Small Baseline Subset (SBAS) time-series technique to assess the surface deformation related to the activation of landslides. We observed up to +/- 17 mm/year of LOS velocity deformation rates, which were projected along the local steepest slope and resulted in velocity rates of up to -63 mm/year. The obtained rates indicate very slow movement of the deep-seated landslides during the observation time. We also compared these movements with precipitation and earthquake records. The results suggest that the deformation peaks correlate with rainfall in the 3 preceding months and with an earthquake event. Overall, the results of this study indicated the great potential of L-band InSAR time series analysis for efficient spatiotemporal identification and monitoring of slope activations in this region of high landslide activity in Southern Kyrgyzstan. Y1 - 2015 U6 - https://doi.org/10.3390/rs70708973 SN - 2072-4292 VL - 7 IS - 7 SP - 8973 EP - 8994 PB - MDPI CY - Basel ER - TY - GEN A1 - Teshebaeva, Kanayim A1 - Roessner, Sigrid A1 - Echtler, Helmut Peter A1 - Motagh, Mahdi A1 - Wetzel, Hans-Ulrich A1 - Molodbekov, Bolot T1 - ALOS/PALSAR InSAR time-series analysis for detecting very slow-moving landslides in Southern Kyrgyzstan N2 - This study focuses on evaluating the potential of ALOS/PALSAR time-series data to analyze the activation of deep-seated landslides in the foothill zone of the high mountain Alai range in the southern Tien Shan (Kyrgyzstan). Most previous field-based landslide investigations have revealed that many landslides have indicators for ongoing slow movements in the form of migrating and newly developing cracks. L-band ALOS/PALSAR data for the period between 2007 and 2010 are available for the 484 km2 area in this study. We analyzed these data using the Small Baseline Subset (SBAS) time-series technique to assess the surface deformation related to the activation of landslides. We observed up to ±17 mm/year of LOS velocity deformation rates, which were projected along the local steepest slope and resulted in velocity rates of up to −63 mm/year. The obtained rates indicate very slow movement of the deep-seated landslides during the observation time. We also compared these movements with precipitation and earthquake records. The results suggest that the deformation peaks correlate with rainfall in the 3 preceding months and with an earthquake event. Overall, the results of this study indicated the great potential of L-band InSAR time series analysis for efficient spatiotemporal identification and monitoring of slope activations in this region of high landslide activity in Southern Kyrgyzstan. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 344 KW - interferometric SAR (InSAR) KW - small baseline subset (SBAS) KW - time-series KW - ALOS/PALSAR KW - deep seated landslide KW - very slow moving landslide Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400083 ER - TY - JOUR A1 - Vassileva, Magdalena A1 - Al-Halbouni, Djamil A1 - Motagh, Mahdi A1 - Walter, Thomas R. A1 - Dahm, Torsten A1 - Wetzel, Hans-Ulrich T1 - A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceio, Brazil JF - Scientific reports N2 - Ground subsidence caused by natural or anthropogenic processes affects major urban areas worldwide. Sinkhole formation and infrastructure fractures have intensified in the federal capital of Maceio (Alagoas, Brazil) since early 2018, forcing authorities to relocate affected residents and place buildings under demolition. In this study, we present a 16-year history (2004-2020) of surface displacement, which shows precursory deformations in 2004-2005, reaching a maximum cumulative subsidence of approximately 200 cm near the Mundau Lagoon coast in November 2020. By integrating the displacement observations with numerical source modelling, we suggest that extensive subsidence can be primarily associated with the removal of localized, deep-seated material at the location and depth where salt is mined. We discuss the accelerating subsidence rates, influence of severe precipitation events on the aforementioned geological instability, and related hazards. This study suggests that feedback destabilization mechanisms may arise in evaporite systems due to anthropogenic activities, fostering enhanced and complex superficial ground deformation. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-87033-0 SN - 2045-2322 VL - 11 IS - 1 PB - Springer Nature CY - Berlin ER -