TY - JOUR A1 - Wetterich, Sebastian A1 - Schirrmeiste, Lutz A1 - Nazarova, Larisa B. A1 - Palagushkina, Olga A1 - Bobrov, Anatoly A1 - Pogosyan, Lilit A1 - Savelieva, Larisa A1 - Syrykh, Liudmila A1 - Matthes, Heidrun A1 - Fritz, Michael A1 - Günther, Frank A1 - Opel, Thomas A1 - Meyer, Hanno T1 - Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia) JF - Permafrost and Periglacial Processes N2 - Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene. KW - bioindicators KW - cryolithology KW - hydrochemistry KW - Khalerchinskaya tundra KW - stable water isotopes Y1 - 2018 U6 - https://doi.org/10.1002/ppp.1979 SN - 1045-6740 SN - 1099-1530 VL - 29 IS - 3 SP - 182 EP - 198 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Overduin, Pier Paul A1 - Westermann, Sebastian A1 - Yoshikawa, Kenji A1 - Haberlau, Thomas A1 - Romanovsky, Vladimir E. A1 - Wetterich, Sebastian T1 - Geoelectric observations of the degradation of nearshore submarine permafrost at Barrow (Alaskan Beaufort Sea) JF - Journal of geophysical research : Earth surface N2 - Submarine permafrost degradation rates may be determined by a number of interacting processes, including rates of sea level rise and coastal erosion, sea bottom temperature and salinity regimes, geothermal heat flux and heat and mass diffusion within the sediment column. Observations of ice-bearing permafrost in shelf sediments are necessary in order to determine its spatial distribution and to quantify its degradation rate. We tested the use of direct current electrical resistivity to ice-bearing permafrost in Elson Lagoon northeast of Barrow, Alaska (Beaufort Sea). A sharp increase in electrical resistivity was observed in profiles collected perpendicular to and along the coastline and is interpreted to be the boundary between ice-free sediment and underlying ice-bearing submarine permafrost. The depth to the interpreted ice-bearing permafrost increases from <2 m below sea level to over 12 m below sea level with increasing distance from the coastline. The dependence of the saline sediment electrical resistivity on temperature and freezing was measured in the laboratory to provide validation for the field measurements. Electrical resistivity was shown to be effective for detection of shallow ice-bearing permafrost in the coastal zone. Historical coastal retreat rates were combined with the inclination of the top of the ice-bearing permafrost to calculate mean vertical permafrost degradation rates of 1 to 4 cm yr(-1). Y1 - 2012 U6 - https://doi.org/10.1029/2011JF002088 SN - 0148-0227 VL - 117 IS - 14 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Lenz, Josefine A1 - Wetterich, Sebastian A1 - Jones, Benjamin M. A1 - Meyer, Hanno A1 - Bobrov, Anatoly A1 - Grosse, Guido T1 - Evidence of multiple thermokarst lake generations from an 11800-year-old permafrost core on the northern Seward Peninsula, Alaska JF - Boreas N2 - Permafrost degradation influences the morphology, biogeochemical cycling and hydrology of Arctic landscapes over a range of time scales. To reconstruct temporal patterns of early to late Holocene permafrost and thermokarst dynamics, site-specific palaeo-records are needed. Here we present a multi-proxy study of a 350-cm-long permafrost core from a drained lake basin on the northern Seward Peninsula, Alaska, revealing Lateglacial toHolocene thermokarst lake dynamics in a central location of Beringia. Use of radiocarbon dating, micropalaeontology (ostracods and testaceans), sedimentology (grain-size analyses, magnetic susceptibility, tephra analyses), geochemistry (total nitrogen and carbon, total organic carbon, C-13(org)) and stable water isotopes (O-18, D, dexcess) of ground ice allowed the reconstruction of several distinct thermokarst lake phases. These include a pre-lacustrine environment at the base of the core characterized by the Devil Mountain Maar tephra (22800 +/- 280cal. a BP, Unit A), which has vertically subsided in places due to subsequent development of a deep thermokarst lake that initiated around 11800cal. a BP (Unit B). At about 9000cal. a BP this lake transitioned from a stable depositional environment to a very dynamic lake system (Unit C) characterized by fluctuating lake levels, potentially intermediate wetland development, and expansion and erosion of shore deposits. Complete drainage of this lake occurred at 1060cal. a BP, including post-drainage sediment freezing from the top down to 154cm and gradual accumulation of terrestrial peat (Unit D), as well as uniform upward talik refreezing. This core-based reconstruction of multiple thermokarst lake generations since 11800cal. a BP improves our understanding of the temporal scales of thermokarst lake development from initiation to drainage, demonstrates complex landscape evolution in the ice-rich permafrost regions of Central Beringia during the Lateglacial and Holocene, and enhances our understanding of biogeochemical cycles in thermokarst-affected regions of the Arctic. Y1 - 2016 U6 - https://doi.org/10.1111/bor.12186 SN - 0300-9483 SN - 1502-3885 VL - 45 SP - 584 EP - 603 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lenz, Josefine A1 - Grosse, Guido A1 - Jones, Benjamin M. A1 - Anthony, Katey M. Walter A1 - Bobrov, Anatoly A1 - Wulf, Sabine A1 - Wetterich, Sebastian T1 - Mid-Wisconsin to Holocene Permafrost and Landscape Dynamics based on a Drained Lake Basin Core from the Northern Seward Peninsula, Northwest Alaska JF - Permafrost and Periglacial Processes N2 - Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a4m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5ka BP. The latter was terminated by the deposition of 1m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42ka BP. Yedoma deposition continued until 22.5ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances. Copyright (c) 2015 John Wiley & Sons, Ltd. KW - Beringia KW - palaeoenvironmental reconstruction KW - thermokarst lake dynamics KW - cryostratigraphy KW - tephra KW - bioindicators KW - yedoma Y1 - 2016 U6 - https://doi.org/10.1002/ppp.1848 SN - 1045-6740 SN - 1099-1530 VL - 27 SP - 56 EP - 75 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wolter, Juliane A1 - Lantuit, Hugues A1 - Wetterich, Sebastian A1 - Rethemeyer, J. A1 - Fritz, Michael T1 - Climatic, geomorphologic and hydrologic perturbations as drivers for mid- to late Holocene development of ice-wedge polygons in the western Canadian Arctic JF - Permafrost and Periglacial Processes N2 - Ice-wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid- to late Holocene development of modern ice-wedge polygon sites to explore drivers of change and reasons for long-term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that ail sites developed from aquatic to wetland conditions. In the mid-Holocene, shallow lakes and partly submerged ice-wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice-wedge polygons re-initiated within the last millennium. Ice-wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice-wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice-wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low-centered polygons persisted for millennia. Ice-wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high-centered polygons and may lead to self-enhancing degradation under continued warming. KW - carbon KW - lowland coasts KW - permafrost degradation KW - plant macrofossil analysis KW - tundra vegetation KW - western Canadian Arctic Y1 - 2018 U6 - https://doi.org/10.1002/ppp.1977 SN - 1045-6740 SN - 1099-1530 VL - 29 IS - 3 SP - 164 EP - 181 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Fritz, Michael A1 - Unkel, Ingmar A1 - Lenz, Josefine A1 - Gajewski, Konrad A1 - Frenzel, Peter A1 - Paquette, Nathalie A1 - Lantuit, Hugues A1 - Körte, Lisa A1 - Wetterich, Sebastian T1 - Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments BT - a case study from Herschel Island, Yukon (Canada) JF - Journal of paleolimnolog N2 - Thermokarst lakes cover nearly one fourth of ice-rich permafrost lowlands in the Arctic. Sediments from an athalassic subsaline thermokarst lake on Herschel Island (69°36′N; 139°04′W, Canadian Arctic) were used to understand regional changes in climate and in sediment transport, hydrology, nutrient availability and permafrost disturbance. The sediment record spans the last ~ 11,700 years and the basal date is in good agreement with the Holocene onset of thermokarst initiation in the region. Electrical conductivity in pore water continuously decreases, thus indicating desalinization and continuous increase of lake size and water level. The inc/coh ratio of XRF scans provides a high-resolution organic-carbon proxy which correlates with TOC measurements. XRF-derived Mn/Fe ratios indicate aerobic versus anaerobic conditions which moderate the preservation potential of organic matter in lake sediments. The coexistence of marine, brackish and freshwater ostracods and foraminifera is explained by (1) oligohaline to mesohaline water chemistry of the past lake and (2) redeposition of Pleistocene specimens found within upthrusted marine sediments around the lake. Episodes of catchment disturbance are identified when calcareous fossils and allochthonous material were transported into the lake by thermokarst processes such as active-layer detachments, slumping and erosion of ice-rich shores. The pollen record does not show major variations and the pollen-based climate record does not match well with other summer air temperature reconstructions from this region. Local vegetation patterns in small catchments are strongly linked to morphology and sub-surface permafrost conditions rather than to climate. Multidisciplinary studies can identify the onset and life cycle of thermokarst lakes as they play a crucial role in Arctic freshwater ecosystems and in the global carbon cycle of the past, present and future. KW - Arctic KW - Permafrost KW - Athalassic subsaline lake KW - XRF scanning KW - Pore-water hydrochemistry KW - Ostracoda Y1 - 2018 U6 - https://doi.org/10.1007/s10933-018-0025-0 SN - 0921-2728 SN - 1573-0417 VL - 60 IS - 1 SP - 77 EP - 96 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Fritz, Michael A1 - Wolter, Juliane A1 - Rudaya, Natalia A1 - Palagushkina, Olga A1 - Nazarova, Larisa B. A1 - Obu, Jaroslav A1 - Rethemeyer, Janet A1 - Lantuit, Hugues A1 - Wetterich, Sebastian T1 - Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada) JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, delta C-13), stable water isotopes (delta O-18, delta D), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUS) correspond to the main stages of deposition (1) in a thermokarst lake (SW : 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene. (C) 2016 Elsevier Ltd. All rights reserved. KW - Permafrost peatlands KW - Arctic KW - Thermokarst KW - Talik KW - Ice-wedge polygon KW - Pollen KW - Diatoms KW - Plant macrofossils KW - Stable water isotopes KW - Deuterium excess Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.008 SN - 0277-3791 VL - 147 SP - 279 EP - 297 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Gorodnichev, Ruslan A1 - Wetterich, Sebastian T1 - The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables JF - Polar research : a Norwegian journal of Polar research N2 - Relative abundances of 157 diatom taxa from Yakutian lake surface-sediments were investigated for their potential to indicate certain environmental conditions. Data from 206 sites from Arctic, sub-Arctic and boreal environments were included. Redundancy analyses were performed to assess the explanatory power of mean July temperature (T-July), conductivity, pH, dissolved silica concentration, phosphate concentration, lake depth and vegetation type on diatom species composition. Boosted regression tree analyses were performed to infer the most relevant environmental variables for abundances of individual taxa and weighted average regression was applied to infer their respective optimum and tolerance. Electrical conductivity was best indicated by diatom taxa. In contrast, only few taxa were indicative of Si and water depth. Few taxa were related to specific pH values. Although T-July, explained the highest proportion of variance in the diatom spectra and was, after conductivity, the second-most selected splitting variable, we a priori decided not to present indicator taxa because of the poorly understood relationship between diatom occurrences and T-July. In total, 92 diatom taxa were reliable indicators of a certain vegetation type or a combination of several types. The high numbers of indicative species for open vegetation sites and for forested sites suggest that the principal turnover is the transition from forest-tundra to northern taiga. Overall, our results reveal that preference ranges of diatom taxa for environmental variables are mostly broad, and the use of indicator taxa for the purposes of environmental reconstruction or environmental monitoring is therefore restricted to marked rather than subtle environmental transitions. KW - Temperature KW - pH KW - dissolved silica concentration KW - Arctic KW - diatom indicator species Y1 - 2018 U6 - https://doi.org/10.1080/17518369.2018.1485625 SN - 0800-0395 SN - 1751-8369 VL - 37 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Wetterich, Sebastian A1 - Ulrich, Mathias T1 - Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Thermokarst lakes are assumed to develop cyclically, driven by processes that are triggered by climate and maintained by internal feedbacks that may trigger lake drainage. However, the duration of these cycles remains uncertain, as well as whether or not they affect the stabilization of lake ecosystems in permafrost regions over millennial time scales. Our research has combined investigations into modern lake-to-lake variability with a study of the long-term development of individual lakes. We have investigated the physico-chemical and diatom compositions of a set of 101 lakes with a variety of different origins in central Yakutia (Eastern Siberia), including thermokarst lakes, fluvial-erosion thermokarst lakes, fluvial-erosion lakes, and dune lakes. We found a significant relationship between lake genesis and the present-day variability in environmental and diatom characteristics, as revealed by multi-response permutation procedures, indicator species analyses, and redundancy analyses. Environmental parameters also exhibit a significant correlation with variations in the diatom data, for which they may have been to a substantial extent responsible. Mg and SO4 concentrations, together with pH and water depth, were identified as the most important parameters, influencing the variations in the diatom data almost as much as the entire environmental parameter set. We were therefore able to establish a robust Mg-diatom transfer function, which was then applied to three Holocene lake records. From these reconstructions, together with a general interpretation of the diatom record (including, e.g., the ratio between benthic/epiphytic and planktonic taxa), we have been able to infer that all three of these lakes show (1) a continuous record with no desiccation events, (2) high lake water-levels during the early Holocene, (3) centennial to millennial scale variability, and (4) high levels of variability during the early Holocene but rather stable conditions during the late Holocene (a feature that is also known from other sites around the world). We therefore concluded that the development of these three lakes was mainly driven directly by the climate, rather than by thaw lake cycling. KW - Diatoms KW - Holocene KW - Thaw lakes KW - Thermokarst KW - Alas KW - Central Yakutia KW - Alkalinity Y1 - 2012 U6 - https://doi.org/10.1016/j.quascirev.2012.06.020 SN - 0277-3791 VL - 51 SP - 56 EP - 70 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schennen, Stephan A1 - Tronicke, Jens A1 - Wetterich, Sebastian A1 - Allroggen, Niklas A1 - Schwamborn, Georg A1 - Schirrmeister, Lutz T1 - 3D ground-penetrating radar imaging of ice complex deposits in northern East Siberia JF - Geophysics N2 - Ice complex deposits are characteristic, ice-rich formations in northern East Siberia and represent an important part in the arctic carbon pool. Recently, these late Quaternary deposits are the objective of numerous investigations typically relying on outcrop and borehole data. Many of these studies can benefit from a 3D structural model of the subsurface for upscaling their observations or for constraining estimations of inventories, such as the local carbon stock. We have addressed this problem of structural imaging by 3D ground-penetrating radar (GPR), which, in permafrost studies, has been primarily used for 2D profiling. We have used a 3D kinematic GPR surveying strategy at a field site located in the New Siberian Archipelago on top of an ice complex. After applying a 3D GPR processing sequence, we were able to trace two horizons at depths below 20 m. Taking available borehole and outcrop data into account, we have interpreted these two features as interfaces of major lithologic units and derived a 3D cryostratigraphic model of the subsurface. Our data example demonstrated that a 3D surveying and processing strategy was crucial at our field site and showed the potential of 3D GPR to image geologic structures in complex ice-rich permafrost landscapes. Y1 - 2016 U6 - https://doi.org/10.1190/GEO2015-0129.1 SN - 0016-8033 SN - 1942-2156 VL - 81 SP - WA195 EP - WA202 PB - Society of Exploration Geophysicists CY - Tulsa ER -