TY - JOUR A1 - Wetterich, Sebastian A1 - Schirrmeiste, Lutz A1 - Nazarova, Larisa B. A1 - Palagushkina, Olga A1 - Bobrov, Anatoly A1 - Pogosyan, Lilit A1 - Savelieva, Larisa A1 - Syrykh, Liudmila A1 - Matthes, Heidrun A1 - Fritz, Michael A1 - Günther, Frank A1 - Opel, Thomas A1 - Meyer, Hanno T1 - Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia) JF - Permafrost and Periglacial Processes N2 - Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene. KW - bioindicators KW - cryolithology KW - hydrochemistry KW - Khalerchinskaya tundra KW - stable water isotopes Y1 - 2018 U6 - https://doi.org/10.1002/ppp.1979 SN - 1045-6740 SN - 1099-1530 VL - 29 IS - 3 SP - 182 EP - 198 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Fritz, Michael A1 - Unkel, Ingmar A1 - Lenz, Josefine A1 - Gajewski, Konrad A1 - Frenzel, Peter A1 - Paquette, Nathalie A1 - Lantuit, Hugues A1 - Körte, Lisa A1 - Wetterich, Sebastian T1 - Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments BT - a case study from Herschel Island, Yukon (Canada) JF - Journal of paleolimnolog N2 - Thermokarst lakes cover nearly one fourth of ice-rich permafrost lowlands in the Arctic. Sediments from an athalassic subsaline thermokarst lake on Herschel Island (69°36′N; 139°04′W, Canadian Arctic) were used to understand regional changes in climate and in sediment transport, hydrology, nutrient availability and permafrost disturbance. The sediment record spans the last ~ 11,700 years and the basal date is in good agreement with the Holocene onset of thermokarst initiation in the region. Electrical conductivity in pore water continuously decreases, thus indicating desalinization and continuous increase of lake size and water level. The inc/coh ratio of XRF scans provides a high-resolution organic-carbon proxy which correlates with TOC measurements. XRF-derived Mn/Fe ratios indicate aerobic versus anaerobic conditions which moderate the preservation potential of organic matter in lake sediments. The coexistence of marine, brackish and freshwater ostracods and foraminifera is explained by (1) oligohaline to mesohaline water chemistry of the past lake and (2) redeposition of Pleistocene specimens found within upthrusted marine sediments around the lake. Episodes of catchment disturbance are identified when calcareous fossils and allochthonous material were transported into the lake by thermokarst processes such as active-layer detachments, slumping and erosion of ice-rich shores. The pollen record does not show major variations and the pollen-based climate record does not match well with other summer air temperature reconstructions from this region. Local vegetation patterns in small catchments are strongly linked to morphology and sub-surface permafrost conditions rather than to climate. Multidisciplinary studies can identify the onset and life cycle of thermokarst lakes as they play a crucial role in Arctic freshwater ecosystems and in the global carbon cycle of the past, present and future. KW - Arctic KW - Permafrost KW - Athalassic subsaline lake KW - XRF scanning KW - Pore-water hydrochemistry KW - Ostracoda Y1 - 2018 U6 - https://doi.org/10.1007/s10933-018-0025-0 SN - 0921-2728 SN - 1573-0417 VL - 60 IS - 1 SP - 77 EP - 96 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Gorodnichev, Ruslan A1 - Wetterich, Sebastian T1 - The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables JF - Polar research : a Norwegian journal of Polar research N2 - Relative abundances of 157 diatom taxa from Yakutian lake surface-sediments were investigated for their potential to indicate certain environmental conditions. Data from 206 sites from Arctic, sub-Arctic and boreal environments were included. Redundancy analyses were performed to assess the explanatory power of mean July temperature (T-July), conductivity, pH, dissolved silica concentration, phosphate concentration, lake depth and vegetation type on diatom species composition. Boosted regression tree analyses were performed to infer the most relevant environmental variables for abundances of individual taxa and weighted average regression was applied to infer their respective optimum and tolerance. Electrical conductivity was best indicated by diatom taxa. In contrast, only few taxa were indicative of Si and water depth. Few taxa were related to specific pH values. Although T-July, explained the highest proportion of variance in the diatom spectra and was, after conductivity, the second-most selected splitting variable, we a priori decided not to present indicator taxa because of the poorly understood relationship between diatom occurrences and T-July. In total, 92 diatom taxa were reliable indicators of a certain vegetation type or a combination of several types. The high numbers of indicative species for open vegetation sites and for forested sites suggest that the principal turnover is the transition from forest-tundra to northern taiga. Overall, our results reveal that preference ranges of diatom taxa for environmental variables are mostly broad, and the use of indicator taxa for the purposes of environmental reconstruction or environmental monitoring is therefore restricted to marked rather than subtle environmental transitions. KW - Temperature KW - pH KW - dissolved silica concentration KW - Arctic KW - diatom indicator species Y1 - 2018 U6 - https://doi.org/10.1080/17518369.2018.1485625 SN - 0800-0395 SN - 1751-8369 VL - 37 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Wolter, Juliane A1 - Lantuit, Hugues A1 - Wetterich, Sebastian A1 - Rethemeyer, Janet A1 - Fritz, Michael T1 - Climatic, geomorphologic and hydrologic perturbations as drivers for mid- to late Holocene development of ice-wedge polygons in the western Canadian Arctic JF - Permafrost and Periglacial Processes N2 - Ice-wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid- to late Holocene development of modern ice-wedge polygon sites to explore drivers of change and reasons for long-term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that ail sites developed from aquatic to wetland conditions. In the mid-Holocene, shallow lakes and partly submerged ice-wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice-wedge polygons re-initiated within the last millennium. Ice-wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice-wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice-wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low-centered polygons persisted for millennia. Ice-wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high-centered polygons and may lead to self-enhancing degradation under continued warming. KW - carbon KW - lowland coasts KW - permafrost degradation KW - plant macrofossil analysis KW - tundra vegetation KW - western Canadian Arctic Y1 - 2018 U6 - https://doi.org/10.1002/ppp.1977 SN - 1045-6740 SN - 1099-1530 VL - 29 IS - 3 SP - 164 EP - 181 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Schirrmeister, Lutz A1 - Bobrov, Anatoly A1 - Raschke, Elena A1 - Herzschuh, Ulrike A1 - Strauss, Jens A1 - Pestryakova, Luidmila Agafyevna A1 - Wetterich, Sebastian T1 - Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 719 KW - permafrost KW - cryolithology KW - radiocarbon dating KW - paleoecology KW - rhizopods KW - pollen KW - plant macro-fossils Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426603 SN - 1866-8372 IS - 719 ER - TY - JOUR A1 - Schirrmeister, Lutz A1 - Bobrov, Anatoly A1 - Raschke, Elena A1 - Herzschuh, Ulrike A1 - Strauss, Jens A1 - Pestryakova, Luidmila Agafyevna A1 - Wetterich, Sebastian T1 - Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands JF - Arctic, antarctic, and alpine research : an interdisciplinary journal N2 - Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture. KW - Permafrost KW - cryolithology KW - radiocarbon dating KW - paleoecology KW - rhizopods KW - pollen KW - plant macro-fossils Y1 - 2018 U6 - https://doi.org/10.1080/15230430.2018.1462595 SN - 1523-0430 SN - 1938-4246 VL - 50 IS - 1 PB - Institute of Arctic and Alpine Research, University of Colorado CY - Boulder ER -