TY - JOUR A1 - Wetterich, Sebastian A1 - Rudaya, Natalia A1 - Kuznetsov, Vladislav A1 - Maksimov, Fedor A1 - Opel, Thomas A1 - Meyer, Hanno A1 - Günther, Frank A1 - Bobrov, Anatoly A1 - Raschke, Elena A1 - Zimmermann, Heike Hildegard A1 - Strauss, Jens A1 - Starikova, Anna A1 - Fuchs, Margret A1 - Schirrmeister, Lutz T1 - Ice Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka JF - Quaternary research : an interdisciplinary journal N2 - Late Quaternary landscapes of unglaciated Beringia were largely shaped by ice-wedge polygon tundra. Ice Complex (IC) strata preserve such ancient polygon formations. Here we report on the Yukagir IC from Bol'shoy Lyakhovsky Island in northeastern Siberia and suggest that new radioisotope disequilibria (230Th/U) dates of the Yukagir IC peat confirm its formation during the Marine Oxygen Isotope Stage (MIS) 7a–c interglacial period. The preservation of the ice-rich Yukagir IC proves its resilience to last interglacial and late glacial–Holocene warming. This study compares the Yukagir IC to IC strata of MIS 5, MIS 3, and MIS 2 ages exposed on Bol'shoy Lyakhovsky Island. Besides high intrasedimental ice content and syngenetic ice wedges intersecting silts, sandy silts, the Yukagir IC is characterized by high organic matter (OM) accumulation and low OM decomposition of a distinctive Drepanocladus moss-peat. The Yukagir IC pollen data reveal grass-shrub-moss tundra indicating rather wet summer conditions similar to modern ones. The stable isotope composition of Yukagir IC wedge ice is similar to those of the MIS 5 and MIS 3 ICs pointing to similar atmospheric moisture generation and transport patterns in winter. IC data from glacial and interglacial periods provide insights into permafrost and climate dynamics since about 200 ka. KW - Cryostratigraphy KW - Ice wedges KW - Stable isotopes KW - Pollen KW - Radioisotope disequilibria dating KW - Beringia Y1 - 2019 U6 - https://doi.org/10.1017/qua.2019.6 SN - 0033-5894 SN - 1096-0287 VL - 92 IS - 2 SP - 530 EP - 548 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Opel, Thomas A1 - Murton, Julian B. A1 - Wetterich, Sebastian A1 - Meyer, Hanno A1 - Ashastina, Kseniia A1 - Günther, Frank A1 - Grotheer, Hendrik A1 - Mollenhauer, Gesine A1 - Danilov, Petr P. A1 - Boeskorov, Vasily A1 - Savvinov, Grigoriy N. A1 - Schirrmeister, Lutz T1 - Past climate and continentality inferred from ice wedges at Batagay Highlands, interior Yakutia JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Ice wedges in the Yana Highlands of interior Yakutia - the most continental region of the Northern Hemisphere - were investigated to elucidate changes in winter climate and continentality that have taken place since the Middle Pleistocene. The Batagay megaslump exposes ice wedges and composite wedges that were sampled from three cryostratigraphic units: the lower ice complex of likely pre-Marine Isotope Stage (MIS) 6 age, the upper ice complex (Yedoma) and the upper sand unit (both MIS 3 to 2). A terrace of the nearby Adycha River provides a Late Holocene (MIS 1) ice wedge that serves as a modern reference for interpretation. The stable-isotope composition of ice wedges in the MIS 3 upper ice complex at Batagay is more depleted (mean delta O-18 about -35 parts per thousand) than those from 17 other ice-wedge study sites across coastal and central Yakutia. This observation points to lower winter temperatures and therefore higher continentality in the Yana Highlands during MIS 3. Likewise, more depleted isotope values are found in Holocene wedge ice (mean delta O-18 about -29 parts per thousand) compared to other sites in Yakutia. Ice-wedge isotopic signatures of the lower ice complex mean delta O-18 about -33 parts per thousand) and of the MIS 3-2 upper sand unit (mean delta O-18 from about -33 parts per thousand to -30 parts per thousand) are less distinctive regionally. The latter unit preserves traces of fast formation in rapidly accumulating sand sheets and of post-depositional isotopic fractionation. Y1 - 2019 U6 - https://doi.org/10.5194/cp-15-1443-2019 SN - 1814-9324 SN - 1814-9332 VL - 15 IS - 4 SP - 1443 EP - 1461 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Palagushkina, Olga V. A1 - Wetterich, Sebastian A1 - Schirrmeister, Lutz A1 - Nazarova, Larisa B. T1 - Modern and fossil diatom assemblages from Bol’shoy Lyakhovsky Island (New Siberian Archipelago, Arctic Siberia) JF - Contemporary Problems of Ecology N2 - This article discusses the results of a taxonomic and ecological investigation of diatoms from polygonal ponds and Quaternary permafrost deposits of Bol’shoy Lyakhovsky Island (New Siberian Archipelago) and the reconstruction of climatic changes on the Island during late Pleistocene/Holocene transition using fossil diatom assemblages from the permafrost deposits. The taxonomic list of diatoms includes 159 diatom species. The main ecological factors that determine the distribution of diatoms in the investigated data set are mean July air temperature, рН, electrical conductivity, water depth, and concentrations of Si4+ and Al3+. An increase in water depth and stable lacustrine conditions in the Lateglacial–Holocene in the ancient thermokarst lake relate to Lateglacial warming before 11860 ± 160 years BP and during the early Holocene between 11210 ± 160 and 7095 ± 60 years BP. KW - Pleistocene KW - Holocene Y1 - 2017 U6 - https://doi.org/10.1134/S1995425517040060 SN - 1995-4255 SN - 1995-4263 VL - 10 SP - 380 EP - 394 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Wetterich, Sebastian A1 - Schirrmeiste, Lutz A1 - Nazarova, Larisa B. A1 - Palagushkina, Olga A1 - Bobrov, Anatoly A1 - Pogosyan, Lilit A1 - Savelieva, Larisa A1 - Syrykh, Liudmila A1 - Matthes, Heidrun A1 - Fritz, Michael A1 - Günther, Frank A1 - Opel, Thomas A1 - Meyer, Hanno T1 - Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia) JF - Permafrost and Periglacial Processes N2 - Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene. KW - bioindicators KW - cryolithology KW - hydrochemistry KW - Khalerchinskaya tundra KW - stable water isotopes Y1 - 2018 U6 - https://doi.org/10.1002/ppp.1979 SN - 1045-6740 SN - 1099-1530 VL - 29 IS - 3 SP - 182 EP - 198 PB - Wiley CY - Hoboken ER - TY - THES A1 - Wetterich, Sebastian T1 - Freshwater ostracods as bioindicators in Arctic periglacial regions Y1 - 2008 CY - Potsdam ER - TY - JOUR A1 - Overduin, Pier Paul A1 - Westermann, Sebastian A1 - Yoshikawa, Kenji A1 - Haberlau, Thomas A1 - Romanovsky, Vladimir E. A1 - Wetterich, Sebastian T1 - Geoelectric observations of the degradation of nearshore submarine permafrost at Barrow (Alaskan Beaufort Sea) JF - Journal of geophysical research : Earth surface N2 - Submarine permafrost degradation rates may be determined by a number of interacting processes, including rates of sea level rise and coastal erosion, sea bottom temperature and salinity regimes, geothermal heat flux and heat and mass diffusion within the sediment column. Observations of ice-bearing permafrost in shelf sediments are necessary in order to determine its spatial distribution and to quantify its degradation rate. We tested the use of direct current electrical resistivity to ice-bearing permafrost in Elson Lagoon northeast of Barrow, Alaska (Beaufort Sea). A sharp increase in electrical resistivity was observed in profiles collected perpendicular to and along the coastline and is interpreted to be the boundary between ice-free sediment and underlying ice-bearing submarine permafrost. The depth to the interpreted ice-bearing permafrost increases from <2 m below sea level to over 12 m below sea level with increasing distance from the coastline. The dependence of the saline sediment electrical resistivity on temperature and freezing was measured in the laboratory to provide validation for the field measurements. Electrical resistivity was shown to be effective for detection of shallow ice-bearing permafrost in the coastal zone. Historical coastal retreat rates were combined with the inclination of the top of the ice-bearing permafrost to calculate mean vertical permafrost degradation rates of 1 to 4 cm yr(-1). Y1 - 2012 U6 - https://doi.org/10.1029/2011JF002088 SN - 0148-0227 VL - 117 IS - 14 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schennen, Stephan A1 - Tronicke, Jens A1 - Wetterich, Sebastian A1 - Allroggen, Niklas A1 - Schwamborn, Georg A1 - Schirrmeister, Lutz T1 - 3D ground-penetrating radar imaging of ice complex deposits in northern East Siberia JF - Geophysics N2 - Ice complex deposits are characteristic, ice-rich formations in northern East Siberia and represent an important part in the arctic carbon pool. Recently, these late Quaternary deposits are the objective of numerous investigations typically relying on outcrop and borehole data. Many of these studies can benefit from a 3D structural model of the subsurface for upscaling their observations or for constraining estimations of inventories, such as the local carbon stock. We have addressed this problem of structural imaging by 3D ground-penetrating radar (GPR), which, in permafrost studies, has been primarily used for 2D profiling. We have used a 3D kinematic GPR surveying strategy at a field site located in the New Siberian Archipelago on top of an ice complex. After applying a 3D GPR processing sequence, we were able to trace two horizons at depths below 20 m. Taking available borehole and outcrop data into account, we have interpreted these two features as interfaces of major lithologic units and derived a 3D cryostratigraphic model of the subsurface. Our data example demonstrated that a 3D surveying and processing strategy was crucial at our field site and showed the potential of 3D GPR to image geologic structures in complex ice-rich permafrost landscapes. Y1 - 2016 U6 - https://doi.org/10.1190/GEO2015-0129.1 SN - 0016-8033 SN - 1942-2156 VL - 81 SP - WA195 EP - WA202 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Schirrmeister, Lutz A1 - Meyer, Hanno A1 - Andreev, Andrei A1 - Wetterich, Sebastian A1 - Kienast, Frank A1 - Bobrov, Anatoly A1 - Fuchs, Margret A1 - Sierralta, Melanie A1 - Herzschuh, Ulrike T1 - Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska) JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS C-14], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [Th-230/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground ice and sediments of unit C. Pollen data show that spruce forests and wetlands dominated the area. The macrofossil remains of Picea, Larix, and Alnus incana ssp. tenuifolia also prove the existence of boreal coniferous forests during the mid-Wisconsin interstadial, which were replaced by treeless tundra-steppe vegetation during the late Wisconsin stadial. Unit C is discordantly overlain by the 2-m-thick late Holocene deposits of unit D. The pollen record of unit D indicates boreal forest vegetation similar to the modern one. The permafrost record from the Vault Creek tunnel reflects more than 90 ka of periglacial landscape dynamics triggered by fluvial and eolian accumulation, and formation of ice-wedge polygons and post depositional deformation by slope processes. The record represents a typical Wisconsin valley-bottom facies in Central Alaska. (C) 2016 Elsevier Ltd. All rights reserved. KW - Permafrost KW - Interior Alaska KW - Loess KW - Cryolithology KW - Geochronology KW - Paleoecology KW - Landscape dynamics Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.009 SN - 0277-3791 VL - 147 SP - 259 EP - 278 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lenz, Josefine A1 - Wetterich, Sebastian A1 - Jones, Benjamin M. A1 - Meyer, Hanno A1 - Bobrov, Anatoly A1 - Grosse, Guido T1 - Evidence of multiple thermokarst lake generations from an 11800-year-old permafrost core on the northern Seward Peninsula, Alaska JF - Boreas N2 - Permafrost degradation influences the morphology, biogeochemical cycling and hydrology of Arctic landscapes over a range of time scales. To reconstruct temporal patterns of early to late Holocene permafrost and thermokarst dynamics, site-specific palaeo-records are needed. Here we present a multi-proxy study of a 350-cm-long permafrost core from a drained lake basin on the northern Seward Peninsula, Alaska, revealing Lateglacial toHolocene thermokarst lake dynamics in a central location of Beringia. Use of radiocarbon dating, micropalaeontology (ostracods and testaceans), sedimentology (grain-size analyses, magnetic susceptibility, tephra analyses), geochemistry (total nitrogen and carbon, total organic carbon, C-13(org)) and stable water isotopes (O-18, D, dexcess) of ground ice allowed the reconstruction of several distinct thermokarst lake phases. These include a pre-lacustrine environment at the base of the core characterized by the Devil Mountain Maar tephra (22800 +/- 280cal. a BP, Unit A), which has vertically subsided in places due to subsequent development of a deep thermokarst lake that initiated around 11800cal. a BP (Unit B). At about 9000cal. a BP this lake transitioned from a stable depositional environment to a very dynamic lake system (Unit C) characterized by fluctuating lake levels, potentially intermediate wetland development, and expansion and erosion of shore deposits. Complete drainage of this lake occurred at 1060cal. a BP, including post-drainage sediment freezing from the top down to 154cm and gradual accumulation of terrestrial peat (Unit D), as well as uniform upward talik refreezing. This core-based reconstruction of multiple thermokarst lake generations since 11800cal. a BP improves our understanding of the temporal scales of thermokarst lake development from initiation to drainage, demonstrates complex landscape evolution in the ice-rich permafrost regions of Central Beringia during the Lateglacial and Holocene, and enhances our understanding of biogeochemical cycles in thermokarst-affected regions of the Arctic. Y1 - 2016 U6 - https://doi.org/10.1111/bor.12186 SN - 0300-9483 SN - 1502-3885 VL - 45 SP - 584 EP - 603 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lenz, Josefine A1 - Grosse, Guido A1 - Jones, Benjamin M. A1 - Anthony, Katey M. Walter A1 - Bobrov, Anatoly A1 - Wulf, Sabine A1 - Wetterich, Sebastian T1 - Mid-Wisconsin to Holocene Permafrost and Landscape Dynamics based on a Drained Lake Basin Core from the Northern Seward Peninsula, Northwest Alaska JF - Permafrost and Periglacial Processes N2 - Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a4m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5ka BP. The latter was terminated by the deposition of 1m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42ka BP. Yedoma deposition continued until 22.5ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances. Copyright (c) 2015 John Wiley & Sons, Ltd. KW - Beringia KW - palaeoenvironmental reconstruction KW - thermokarst lake dynamics KW - cryostratigraphy KW - tephra KW - bioindicators KW - yedoma Y1 - 2016 U6 - https://doi.org/10.1002/ppp.1848 SN - 1045-6740 SN - 1099-1530 VL - 27 SP - 56 EP - 75 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Palagushkina, Olga A1 - Wetterich, Sebastian A1 - Biskaborn, Boris K. A1 - Nazarova, Larisa B. A1 - Schirrmeister, Lutz A1 - Lenz, Josefine A1 - Schwamborn, Georg A1 - Grosse, Guido T1 - Diatom records and tephra mineralogy in pingo deposits of Seward Peninsula, Alaska JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Vast areas of the terrestrial Subarctic and Arctic are underlain by permafrost. Landscape evolution is therefore largely controlled by climate-driven periglacial processes. The response of the frozen ground to late Quaternary warm and cold stages is preserved in permafrost sequences, and deducible by multi-proxy palaeoenvironmental approaches. Here, we analyse radiocarbon-dated mid-Wisconsin Interstadial and Holocene lacustrine deposits preserved in the Kit-1 pingo permafrost sequence combined with water and surface sediment samples from nine modern water bodies on Seward Peninsula (NW Alaska) to reconstruct thermokarst dynamics and determine major abiotic factors that controlled the aquatic ecosystem variability. Our methods comprise taxonomical diatom analyses as well as Detrended Correspondence Analysis (DCA) and Redundancy Analysis (RDA). Our results show, that the fossil diatom record reflects thermokarst lake succession since about 42 C-14 kyr BP. Different thermolcarst lake stages during the mid-Wisconsin Interstadial, the late Wisconsin and the early Holocene are mirrored by changes in diatom abundance, diversity, and ecology. We interpret the taxonomical changes in the fossil diatom assemblages in combination with both modern diatom data from surrounding ponds and existing micropalaeontological, sedimentological and mineralogical data from the pingo sequence. A diatom based quantitative reconstruction of lake water pH indicates changing lake environments during mid-Wisconsin to early Holocene stages. Mineralogical analyses indicate presence of tephra fallout and its impact on fossil diatom communities. Our comparison of modern and fossil diatom communities shows the highest floristic similarity of modern polygon ponds to the corresponding initial (shallow water) development stages of thermolcarst lakes. We conclude, that mid-Wisconsin thermokarst processes in the study area could establish during relatively warm interstadial climate conditions accompanied by increased precipitation due to approaching coasts, while still high continentality and hence high seasonal temperature gradients led to warm summers in the central part of Beringia. (C) 2017 Elsevier B.V. All rights reserved. KW - Microalgae assemblages KW - Palaeoenvironments KW - Thermokarst KW - Late Quaternary KW - Permafrost Y1 - 2017 U6 - https://doi.org/10.1016/j.palaeo.2017.04.006 SN - 0031-0182 SN - 1872-616X VL - 479 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wolter, Juliane A1 - Lantuit, Hugues A1 - Wetterich, Sebastian A1 - Rethemeyer, J. A1 - Fritz, Michael T1 - Climatic, geomorphologic and hydrologic perturbations as drivers for mid- to late Holocene development of ice-wedge polygons in the western Canadian Arctic JF - Permafrost and Periglacial Processes N2 - Ice-wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid- to late Holocene development of modern ice-wedge polygon sites to explore drivers of change and reasons for long-term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that ail sites developed from aquatic to wetland conditions. In the mid-Holocene, shallow lakes and partly submerged ice-wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice-wedge polygons re-initiated within the last millennium. Ice-wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice-wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice-wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low-centered polygons persisted for millennia. Ice-wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high-centered polygons and may lead to self-enhancing degradation under continued warming. KW - carbon KW - lowland coasts KW - permafrost degradation KW - plant macrofossil analysis KW - tundra vegetation KW - western Canadian Arctic Y1 - 2018 U6 - https://doi.org/10.1002/ppp.1977 SN - 1045-6740 SN - 1099-1530 VL - 29 IS - 3 SP - 164 EP - 181 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Fritz, Michael A1 - Unkel, Ingmar A1 - Lenz, Josefine A1 - Gajewski, Konrad A1 - Frenzel, Peter A1 - Paquette, Nathalie A1 - Lantuit, Hugues A1 - Körte, Lisa A1 - Wetterich, Sebastian T1 - Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments BT - a case study from Herschel Island, Yukon (Canada) JF - Journal of paleolimnolog N2 - Thermokarst lakes cover nearly one fourth of ice-rich permafrost lowlands in the Arctic. Sediments from an athalassic subsaline thermokarst lake on Herschel Island (69°36′N; 139°04′W, Canadian Arctic) were used to understand regional changes in climate and in sediment transport, hydrology, nutrient availability and permafrost disturbance. The sediment record spans the last ~ 11,700 years and the basal date is in good agreement with the Holocene onset of thermokarst initiation in the region. Electrical conductivity in pore water continuously decreases, thus indicating desalinization and continuous increase of lake size and water level. The inc/coh ratio of XRF scans provides a high-resolution organic-carbon proxy which correlates with TOC measurements. XRF-derived Mn/Fe ratios indicate aerobic versus anaerobic conditions which moderate the preservation potential of organic matter in lake sediments. The coexistence of marine, brackish and freshwater ostracods and foraminifera is explained by (1) oligohaline to mesohaline water chemistry of the past lake and (2) redeposition of Pleistocene specimens found within upthrusted marine sediments around the lake. Episodes of catchment disturbance are identified when calcareous fossils and allochthonous material were transported into the lake by thermokarst processes such as active-layer detachments, slumping and erosion of ice-rich shores. The pollen record does not show major variations and the pollen-based climate record does not match well with other summer air temperature reconstructions from this region. Local vegetation patterns in small catchments are strongly linked to morphology and sub-surface permafrost conditions rather than to climate. Multidisciplinary studies can identify the onset and life cycle of thermokarst lakes as they play a crucial role in Arctic freshwater ecosystems and in the global carbon cycle of the past, present and future. KW - Arctic KW - Permafrost KW - Athalassic subsaline lake KW - XRF scanning KW - Pore-water hydrochemistry KW - Ostracoda Y1 - 2018 U6 - https://doi.org/10.1007/s10933-018-0025-0 SN - 0921-2728 SN - 1573-0417 VL - 60 IS - 1 SP - 77 EP - 96 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Fritz, Michael A1 - Herzschuh, Ulrike A1 - Wetterich, Sebastian A1 - Lantuit, Hugues A1 - De Pascale, Gregory P. A1 - Pollard, Wayne H. A1 - Schirrmeister, Lutz T1 - Late glacial and holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada) JF - Quaternary research : an interdisciplinary journal N2 - Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since similar to 16 cal ka BP. Herb-dominated tundra persisted until similar to 14.7 cal ka BP with mean July air temperatures <= 5 degrees C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bolling/Allerod interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of similar to 1.5 degrees C (similar to 2.5 to 3.0 degrees C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Berula shrub tundra from similar to 5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea. KW - Trout Lake KW - Laurentide Ice Sheet KW - Younger Dryas KW - Holocene thermal maximum KW - Lake sediments KW - Pollen KW - Temperature reconstruction KW - Precipitation reconstruction KW - WAPLS KW - Modern analogue technique Y1 - 2012 U6 - https://doi.org/10.1016/j.yqres.2012.07.007 SN - 0033-5894 VL - 78 IS - 3 SP - 549 EP - 560 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Fritz, Michael A1 - Wolter, Juliane A1 - Rudaya, Natalia A1 - Palagushkina, Olga A1 - Nazarova, Larisa B. A1 - Obu, Jaroslav A1 - Rethemeyer, Janet A1 - Lantuit, Hugues A1 - Wetterich, Sebastian T1 - Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada) JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, delta C-13), stable water isotopes (delta O-18, delta D), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUS) correspond to the main stages of deposition (1) in a thermokarst lake (SW : 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene. (C) 2016 Elsevier Ltd. All rights reserved. KW - Permafrost peatlands KW - Arctic KW - Thermokarst KW - Talik KW - Ice-wedge polygon KW - Pollen KW - Diatoms KW - Plant macrofossils KW - Stable water isotopes KW - Deuterium excess Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.008 SN - 0277-3791 VL - 147 SP - 279 EP - 297 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Schirrmeister, Lutz A1 - Bobrov, Anatoly A1 - Raschke, Elena A1 - Herzschuh, Ulrike A1 - Strauss, Jens A1 - Pestryakova, Luidmila Agafyevna A1 - Wetterich, Sebastian T1 - Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 719 KW - permafrost KW - cryolithology KW - radiocarbon dating KW - paleoecology KW - rhizopods KW - pollen KW - plant macro-fossils Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426603 SN - 1866-8372 IS - 719 ER - TY - JOUR A1 - Schirrmeister, Lutz A1 - Bobrov, Anatoly A1 - Raschke, Elena A1 - Herzschuh, Ulrike A1 - Strauss, Jens A1 - Pestryakova, Luidmila Agafyevna A1 - Wetterich, Sebastian T1 - Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands JF - Arctic, antarctic, and alpine research : an interdisciplinary journal N2 - Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture. KW - Permafrost KW - cryolithology KW - radiocarbon dating KW - paleoecology KW - rhizopods KW - pollen KW - plant macro-fossils Y1 - 2018 U6 - https://doi.org/10.1080/15230430.2018.1462595 SN - 1523-0430 SN - 1938-4246 VL - 50 IS - 1 PB - Institute of Arctic and Alpine Research, University of Colorado CY - Boulder ER - TY - JOUR A1 - Zibulski, Romy A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Wolter, Juliane A1 - Mueller, S. A1 - Schilling, N. A1 - Wetterich, Sebastian A1 - Schirrmeister, Lutz A1 - Tian, Fang T1 - River flooding as a driver of polygon dynamics: modern vegetation data and a millennial peat record from the Anabar River lowlands (Arctic Siberia) JF - Biogeosciences N2 - The spatial and temporal variability of a low-centred polygon on the eastern floodplain area of the lower Anabar River (72.070 degrees N, 113.921 degrees E; northern Yakutia, Siberia) has been investigated using a multi-method approach. The present-day vegetation in each square metre was analysed, revealing a community of Larix, shrubby Betula, and Salix on the polygon rim, a dominance of Carex and Andromeda polifolia in the rim-to-pond transition zone, and a predominantly monospecific Scorpidium scorpioides coverage within the pond. The total organic carbon (TOC) content, TOC/TN (total nitrogen) ratio, grain size, vascular plant macrofossils, moss remains, diatoms, and pollen were analysed for two vertical sections and a sediment core from a transect across the polygon. Radiocarbon dating indicates that the formation of the polygon started at least 1500 yr ago; the general positions of the pond and rim have not changed since that time. Two types of pond vegetation were identified, indicating two contrasting development stages of the polygon. The first was a well-established moss association, dominated by submerged or floating Scorpidium scorpioides and/or Drepanocladus spp. and overgrown by epiphytic diatoms such as Tabellaria flocculosa and Eunotia taxa. This stage coincides temporally with a period in which the polygon was only drained by lateral subsurface water flow, as indicated by mixed grain sizes. A different moss association occurred during times of repeated river flooding (indicated by homogeneous medium-grained sand that probably accumulated during the annual spring snowmelt), characterized by an abundance of Meesia triquetra and a dominance of benthic diatoms (e. g. Navicula vulpina), indicative of a relatively high pH and a high tolerance of disturbance. A comparison of the local polygon vegetation (inferred from moss and macrofossil spectra) with the regional vegetation (inferred from pollen spectra) indicated that the moss association with Scorpidium scorpioides became established during relatively favourable climatic conditions, while the association dominated by Meesia triquetra occurred during periods of harsh climatic conditions. Our study revealed a strong riverine influence (in addition to climatic influences) on polygon development and the type of peat accumulated. Y1 - 2013 U6 - https://doi.org/10.5194/bg-10-5703-2013 SN - 1726-4170 VL - 10 IS - 8 SP - 5703 EP - 5728 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Gorodnichev, Ruslan A1 - Wetterich, Sebastian T1 - The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables JF - Polar research : a Norwegian journal of Polar research N2 - Relative abundances of 157 diatom taxa from Yakutian lake surface-sediments were investigated for their potential to indicate certain environmental conditions. Data from 206 sites from Arctic, sub-Arctic and boreal environments were included. Redundancy analyses were performed to assess the explanatory power of mean July temperature (T-July), conductivity, pH, dissolved silica concentration, phosphate concentration, lake depth and vegetation type on diatom species composition. Boosted regression tree analyses were performed to infer the most relevant environmental variables for abundances of individual taxa and weighted average regression was applied to infer their respective optimum and tolerance. Electrical conductivity was best indicated by diatom taxa. In contrast, only few taxa were indicative of Si and water depth. Few taxa were related to specific pH values. Although T-July, explained the highest proportion of variance in the diatom spectra and was, after conductivity, the second-most selected splitting variable, we a priori decided not to present indicator taxa because of the poorly understood relationship between diatom occurrences and T-July. In total, 92 diatom taxa were reliable indicators of a certain vegetation type or a combination of several types. The high numbers of indicative species for open vegetation sites and for forested sites suggest that the principal turnover is the transition from forest-tundra to northern taiga. Overall, our results reveal that preference ranges of diatom taxa for environmental variables are mostly broad, and the use of indicator taxa for the purposes of environmental reconstruction or environmental monitoring is therefore restricted to marked rather than subtle environmental transitions. KW - Temperature KW - pH KW - dissolved silica concentration KW - Arctic KW - diatom indicator species Y1 - 2018 U6 - https://doi.org/10.1080/17518369.2018.1485625 SN - 0800-0395 SN - 1751-8369 VL - 37 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Wetterich, Sebastian A1 - Ulrich, Mathias T1 - Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Thermokarst lakes are assumed to develop cyclically, driven by processes that are triggered by climate and maintained by internal feedbacks that may trigger lake drainage. However, the duration of these cycles remains uncertain, as well as whether or not they affect the stabilization of lake ecosystems in permafrost regions over millennial time scales. Our research has combined investigations into modern lake-to-lake variability with a study of the long-term development of individual lakes. We have investigated the physico-chemical and diatom compositions of a set of 101 lakes with a variety of different origins in central Yakutia (Eastern Siberia), including thermokarst lakes, fluvial-erosion thermokarst lakes, fluvial-erosion lakes, and dune lakes. We found a significant relationship between lake genesis and the present-day variability in environmental and diatom characteristics, as revealed by multi-response permutation procedures, indicator species analyses, and redundancy analyses. Environmental parameters also exhibit a significant correlation with variations in the diatom data, for which they may have been to a substantial extent responsible. Mg and SO4 concentrations, together with pH and water depth, were identified as the most important parameters, influencing the variations in the diatom data almost as much as the entire environmental parameter set. We were therefore able to establish a robust Mg-diatom transfer function, which was then applied to three Holocene lake records. From these reconstructions, together with a general interpretation of the diatom record (including, e.g., the ratio between benthic/epiphytic and planktonic taxa), we have been able to infer that all three of these lakes show (1) a continuous record with no desiccation events, (2) high lake water-levels during the early Holocene, (3) centennial to millennial scale variability, and (4) high levels of variability during the early Holocene but rather stable conditions during the late Holocene (a feature that is also known from other sites around the world). We therefore concluded that the development of these three lakes was mainly driven directly by the climate, rather than by thaw lake cycling. KW - Diatoms KW - Holocene KW - Thaw lakes KW - Thermokarst KW - Alas KW - Central Yakutia KW - Alkalinity Y1 - 2012 U6 - https://doi.org/10.1016/j.quascirev.2012.06.020 SN - 0277-3791 VL - 51 SP - 56 EP - 70 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schneider, Andrea A1 - Wetterich, Sebastian A1 - Schirrmeister, Lutz A1 - Herzschuh, Ulrike A1 - Meyer, Hanno A1 - Pestryakova, Luidmila Agafyevna T1 - Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia JF - Polar research : a Norwegian journal of Polar research N2 - Freshwater ostracods (Crustacea, Ostracoda) are valuable biological indicators. In Arctic environments, their habitat conditions are barely known and the abundance and diversity of ostracods is documented only in scattered records with incomplete ecological characterization. To determine the taxonomic range of ostracod assemblages and their habitat conditions in polygon ponds in the Indigirka Lowland, north-east Siberia, we collected more than 100 living ostracod individuals per site with a plankton net (mesh size 65 mm) and an exhaustor system from 27 water bodies and studied them in the context of substrate and hydrochemical data. During the summer of 2011, a single pond site and its ostracod population was selected for special study. This first record of the ostracod fauna in the Indigirka Lowland comprises eight species and three additional taxa. Fabaeformiscandona krochini and F. groenlandica were documented for the first time in continental Siberia. Repeated sampling of a low-centre polygon pond yielded insights into the population dynamics of F. pedata. We identified air temperature and precipitation as the main external drivers of water temperatures, water levels, ion concentrations and water stable isotope composition on diurnal and seasonal scales. KW - Arctic limnology KW - permafrost KW - patterned ground KW - ecological indication KW - freshwater ostracods Y1 - 2016 U6 - https://doi.org/10.3402/polar.v35.25225 SN - 0800-0395 SN - 1751-8369 VL - 35 PB - Society of Exploration Geophysicists CY - Abingdon ER - TY - JOUR A1 - Strauss, Jens A1 - Schirrmeister, Lutz A1 - Mangelsdorf, Kai A1 - Eichhorn, L. A1 - Wetterich, Sebastian A1 - Herzschuh, Ulrike T1 - Organic-matter quality of deep permafrost carbon - a study from Arctic Siberia JF - Biogeosciences N2 - The organic-carbon (OC) pool accumulated in Arctic permafrost (perennially frozen ground) equals the carbon stored in the modern atmosphere. To give an idea of how Yedoma region permafrost could respond under future climatic warming, we conducted a study to quantify the organic-matter quality (here defined as the intrinsic potential to be further transformed, decomposed, and mineralized) of late Pleistocene (Yedoma) and Holocene (thermokarst) deposits on the Buor-Khaya Peninsula, northeast Siberia. The objective of this study was to develop a stratigraphic classified organic-matter quality characterization. For this purpose the degree of organic-matter decomposition was estimated by using a multiproxy approach. We applied sedimentological (grain-size analyses, bulk density, ice content) and geochemical parameters (total OC, stable carbon isotopes (delta C-13),total organic carbon : nitrogen (C / N) ratios) as well as lipid biomarkers (n-alkanes, n-fatty acids, hopanes, triterpenoids, and biomarker indices, i.e., average chain length, carbon preference index (CPI), and higher-plant fatty-acid index (HPFA)). Our results show that the Yedoma and thermokarst organic-matter qualities for further decomposition exhibit no obvious degradation-depth trend. Relatively, the C / N and delta C-13 values and the HPFA index show a significantly better preservation of the organic matter stored in thermokarst deposits compared to Yedoma deposits. The CPI data suggest less degradation of the organic matter from both deposits, with a higher value for Yedoma organic matter. As the interquartile ranges of the proxies mostly over-lap, we interpret this as indicating comparable quality for further decomposition for both kinds of deposits with likely better thermokarst organic-matter quality. Supported by principal component analyses, the sediment parameters and quality proxies of Yedoma and thermokarst deposits could not be unambiguously separated from each other. This revealed that the organic-matter vulnerability is heterogeneous and depends on different decomposition trajectories and the previous decomposition and preservation history. Elucidating this was one of the major new contributions of our multiproxy study. With the addition of biomarker data, it was possible to show that permafrost organic-matter degradation likely occurs via a combination of (uncompleted) degradation cycles or a cascade of degradation steps rather than as a linear function of age or sediment facies. We conclude that the amount of organic matter in the studied sediments is high for mineral soils and of good quality and therefore susceptible to future decomposition. The lack of depth trends shows that permafrost acts like a giant freezer, preserving the constant quality of ancient organic matter. When undecomposed Yedoma organic matter is mobilized via thermokarst processes, the fate of this carbon depends largely on the environmental conditions; the carbon could be preserved in an undecomposed state till refreezing occurs. If modern input has occurred, thermokarst organic matter could be of a better quality for future microbial decomposition than that found in Yedoma deposits. Y1 - 2015 U6 - https://doi.org/10.5194/bg-12-2227-2015 SN - 1726-4170 SN - 1726-4189 VL - 12 IS - 7 SP - 2227 EP - 2245 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Strauss, Jens A1 - Schirrmeister, Lutz A1 - Mangelsdorf, Kai A1 - Eichhorn, L. A1 - Wetterich, Sebastian A1 - Herzschuh, Ulrike T1 - Organic-matter quality of deep permafrost carbon BT - a study from Arctic Siberia T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The organic-carbon (OC) pool accumulated in Arctic permafrost (perennially frozen ground) equals the carbon stored in the modern atmosphere. To give an idea of how Yedoma region permafrost could respond under future climatic warming, we conducted a study to quantify the organic-matter quality (here defined as the intrinsic potential to be further transformed, decomposed, and mineralized) of late Pleistocene (Yedoma) and Holocene (thermokarst) deposits on the Buor-Khaya Peninsula, northeast Siberia. The objective of this study was to develop a stratigraphic classified organic-matter quality characterization. For this purpose the degree of organic-matter decomposition was estimated by using a multiproxy approach. We applied sedimentological (grain-size analyses, bulk density, ice content) and geochemical parameters (total OC, stable carbon isotopes (delta C-13),total organic carbon : nitrogen (C / N) ratios) as well as lipid biomarkers (n-alkanes, n-fatty acids, hopanes, triterpenoids, and biomarker indices, i.e., average chain length, carbon preference index (CPI), and higher-plant fatty-acid index (HPFA)). Our results show that the Yedoma and thermokarst organic-matter qualities for further decomposition exhibit no obvious degradation-depth trend. Relatively, the C / N and delta C-13 values and the HPFA index show a significantly better preservation of the organic matter stored in thermokarst deposits compared to Yedoma deposits. The CPI data suggest less degradation of the organic matter from both deposits, with a higher value for Yedoma organic matter. As the interquartile ranges of the proxies mostly over-lap, we interpret this as indicating comparable quality for further decomposition for both kinds of deposits with likely better thermokarst organic-matter quality. Supported by principal component analyses, the sediment parameters and quality proxies of Yedoma and thermokarst deposits could not be unambiguously separated from each other. This revealed that the organic-matter vulnerability is heterogeneous and depends on different decomposition trajectories and the previous decomposition and preservation history. Elucidating this was one of the major new contributions of our multiproxy study. With the addition of biomarker data, it was possible to show that permafrost organic-matter degradation likely occurs via a combination of (uncompleted) degradation cycles or a cascade of degradation steps rather than as a linear function of age or sediment facies. We conclude that the amount of organic matter in the studied sediments is high for mineral soils and of good quality and therefore susceptible to future decomposition. The lack of depth trends shows that permafrost acts like a giant freezer, preserving the constant quality of ancient organic matter. When undecomposed Yedoma organic matter is mobilized via thermokarst processes, the fate of this carbon depends largely on the environmental conditions; the carbon could be preserved in an undecomposed state till refreezing occurs. If modern input has occurred, thermokarst organic matter could be of a better quality for future microbial decomposition than that found in Yedoma deposits. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 514 KW - Holocene peat sequence KW - climate-change KW - thermokarst lakes KW - gas-production KW - Laptev Sea KW - tundra KW - thaw KW - radiocarbon KW - Alaska KW - soils Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409534 SN - 1866-8372 IS - 514 ER -