TY - JOUR A1 - De Cahsan, Binia A1 - Westbury, Michael V. A1 - Drews, Hauke A1 - Tiedemann, Ralph T1 - The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany JF - Mitochondrial DNA Part B N2 - The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany. KW - Bombina bombina KW - Fire-bellied toad KW - mitogenome KW - conservation genetics KW - population delimitation Y1 - 2019 U6 - https://doi.org/10.1080/23802359.2018.1547143 SN - 2380-2359 VL - 4 IS - 1 SP - 498 EP - 500 PB - Taylor & Francis Group CY - London ER - TY - JOUR A1 - Cahsan, Binia De A1 - Westbury, Michael V. A1 - Paraskevopoulou, Sofia A1 - Drews, Hauke A1 - Ott, Moritz A1 - Gollmann, Günter A1 - Tiedemann, Ralph T1 - Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian JF - Evolutionary Applications N2 - Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany. KW - adaptive introgression KW - admixture KW - Bombina bombina KW - genetic rescue KW - mitogenomes KW - transcriptomics Y1 - 2020 SN - 1752-4563 VL - 14 IS - 6 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - De Cahsan, Binia A1 - Westbury, Michael V. A1 - Drews, Hauke A1 - Tiedemann, Ralph T1 - The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 532 KW - Bombina bombina KW - Fire-bellied toad KW - mitogenome KW - conservation genetics KW - population delimitation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423222 SN - 1866-8372 IS - 532 ER - TY - GEN A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1059 KW - multiple sequence alignment KW - Oxidase Subunit-I KW - mitochondrial genome KW - control region KW - Ribosomal-RNA KW - asellota crustacea KW - gammarus crustacea KW - deep-sea KW - DNA KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460792 SN - 1866-8372 IS - 1059 ER - TY - JOUR A1 - Barnett, Ross A1 - Westbury, Michael V. A1 - Sandoval-Velasco, Marcela A1 - Vieira, Filipe Garrett A1 - Jeon, Sungwon A1 - Zazula, Grant A1 - Martin, Michael D. A1 - Ho, Simon Y. W. A1 - Mather, Niklas A1 - Gopalakrishnan, Shyam A1 - Ramos-Madrigal, Jazmin A1 - de Manuel, Marc A1 - Zepeda-Mendoza, M. Lisandra A1 - Antunes, Agostinho A1 - Baez, Aldo Carmona A1 - De Cahsan, Binia A1 - Larson, Greger A1 - O'Brien, Stephen J. A1 - Eizirik, Eduardo A1 - Johnson, Warren E. A1 - Koepfli, Klaus-Peter A1 - Wilting, Andreas A1 - Fickel, Jörns A1 - Dalen, Love A1 - Lorenzen, Eline D. A1 - Marques-Bonet, Tomas A1 - Hansen, Anders J. A1 - Zhang, Guojie A1 - Bhak, Jong A1 - Yamaguchi, Nobuyuki A1 - Gilbert, M. Thomas P. T1 - Genomic adaptations and evolutionary history of the extinct scimitar-toothed cat BT - Homotherium latidens JF - Current biology N2 - Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a -7x nuclear genome and a similar to 38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (similar to 22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage. Y1 - 2020 U6 - https://doi.org/10.1016/j.cub.2020.09.051 SN - 0960-9822 SN - 1879-0445 VL - 30 IS - 24 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) JF - Scientific reports N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-25225-x SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Westbury, Michael V. A1 - Prost, Stefan A1 - Seelenfreund, Andrea A1 - Ramirez, Jose-Miguel A1 - Matisoo-Smith, Elizabeth A. A1 - Knapp, Michael T1 - First complete mitochondrial genome data from ancient South American camelids - The mystery of the chilihueques from Isla Mocha (Chile) JF - Scientific reports Y1 - 2016 U6 - https://doi.org/10.1038/srep38708 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Westbury, Michael V. A1 - Dalerumb, Fredrik A1 - Noren, Karin A1 - Hofreiter, Michael T1 - Complete mitochondrial genome of a bat-eared fox (Otocyon megalotis), along with phylogenetic considerations JF - Mitochondrial DNA. Part B N2 - The bat-eared fox, Otocyon megalotis, is the only member of its genus and is thought to occupy a basal position within the dog family. These factors can lead to challenges in complete mitochondrial reconstructions and accurate phylogenetic positioning. Here, we present the first complete mitochondrial genome of the bat-eared fox recovered using shotgun sequencing and iterative mapping to three distantly related species. Phylogenetic analyses placed the bat-eared fox basal in the Canidae family within the clade including true foxes (Vulpes) and the raccoon dog (Nyctereutes) with high support values. This position is in good agreement with previously published results based on short fragments of mitochondrial and nuclear genes, therefore adding more support to the basal positioning of the bat-eared fox within Canidae. KW - Phylogenetics KW - mitochondria KW - iterative mapping KW - Canidae Y1 - 2017 U6 - https://doi.org/10.1080/23802359.2017.1331325 SN - 2380-2359 VL - 2 IS - 1 SP - 298 EP - 299 PB - Routledge, Taylor & Francis Group CY - London ER - TY - THES A1 - Westbury, Michael V. T1 - Unraveling evolution through Next Generation Sequencing T1 - Entschlüsselung von Evolution durch Sequenzierung der nächsten Generation N2 - The sequencing of the human genome in the early 2000s led to an increased interest in cheap and fast sequencing technologies. This interest culminated in the advent of next generation sequencing (NGS). A number of different NGS platforms have arisen since then all promising to do the same thing, i.e. produce large amounts of genetic information for relatively low costs compared to more traditional methods such as Sanger sequencing. The capabilities of NGS meant that researchers were no longer bound to species for which a lot of previous work had already been done (e.g. model organisms and humans) enabling a shift in research towards more novel and diverse species of interest. This capability has greatly benefitted many fields within the biological sciences, one of which being the field of evolutionary biology. Researchers have begun to move away from the study of laboratory model organisms to wild, natural populations and species which has greatly expanded our knowledge of evolution. NGS boasts a number of benefits over more traditional sequencing approaches. The main benefit comes from the capability to generate information for drastically more loci for a fraction of the cost. This is hugely beneficial to the study of wild animals as, even when large numbers of individuals are unobtainable, the amount of data produced still allows for accurate, reliable population and species level results from a small selection of individuals. The use of NGS to study species for which little to no previous research has been carried out on and the production of novel evolutionary information and reference datasets for the greater scientific community were the focuses of this thesis. Two studies in this thesis focused on producing novel mitochondrial genomes from shotgun sequencing data through iterative mapping, bypassing the need for a close relative to serve as a reference sequence. These mitochondrial genomes were then used to infer species level relationships through phylogenetic analyses. The first of these studies involved reconstructing a complete mitochondrial genome of the bat eared fox (Otocyon megalotis). Phylogenetic analyses of the mitochondrial genome confidently placed the bat eared fox as sister to the clade consisting of the raccoon dog and true foxes within the canidae family. The next study also involved reconstructing a mitochondrial genome but in this case from the extinct Macrauchenia of South America. As this study utilised ancient DNA, it involved a lot of parameter testing, quality controls and strict thresholds to obtain a near complete mitochondrial genome devoid of contamination known to plague ancient DNA studies. Phylogenetic analyses confidently placed Macrauchenia as sister to all living representatives of Perissodactyla with a divergence time of ~66 million years ago. The third and final study of this thesis involved de novo assemblies of both nuclear and mitochondrial genomes from brown and striped hyena and focussed on demographic, genetic diversity and population genomic analyses within the brown hyena. Previous studies of the brown hyena hinted at very low levels of genomic diversity and, perhaps due to this, were unable to find any notable population structure across its range. By incorporating a large number of genetic loci, in the form of complete nuclear genomes, population structure within the brown hyena was uncovered. On top of this, genomic diversity levels were compared to a number of other species. Results showed the brown hyena to have the lowest genomic diversity out of all species included in the study which was perhaps caused by a continuous and ongoing decline in effective population size that started about one million years ago and dramatically accelerated towards the end of the Pleistocene. The studies within this thesis show the power NGS sequencing has and its utility within evolutionary biology. The most notable capabilities outlined in this thesis involve the study of species for which no reference data is available and in the production of large amounts of data, providing evolutionary answers at the species and population level that data produced using more traditional techniques simply could not. N2 - Die Sequenzierung des ersten menschlichen Genoms Anfang der 2000er Jahre förderte das Interesse an kostengünstigen und gleichzeitig schnelleren Sequenziertechniken. Dieses Interesse erreichte seinen derzeitigen Höhepunkt in der Einführung des sogenannten Next Generation Sequencings (NGS). Seitdem wurden zahlreiche NGS-Plattformen entwickelt, die alle dem gleichen Prinzip folgen, nämlich das Erzeugen großer Mengen genetischer Information zu relativ geringen Preisen verglichen mit herkömmlichen Methoden wie der Sanger-Sequenzierung. Die neue Leistungsfähigkeit von NGS bedeutete, dass Forscher nicht mehr länger an Organismen gebunden waren an denen bereits seit Jahren geforscht wurde (bspw. Modellorganismen oder der Mensch), sondern ermöglichte eine Verschiebung in Richtung neuerer und unterschiedlicher Arten von Interesse. Dieses Potential hat viele Wissenschaftsfelder positiv beeinflusst innerhalb der Biowissenschaften, u.a. das Feld der Evolutionsbiologie. Forscher haben angefangen sich zunehmend von Modellorganismen in Laboratorien wegzubewegen hinzu wildlebenden, natürlich vorkommenden Populationen und Arten, was unser Verständnis von Evolution maßgeblich erweitert hat. NGS hat mehrere Vorteile aufzuweisen gegenüber den herkömmlichen Sequenziermethoden. Der wohl größte Vorteil ist die Gewinnung genetischer Daten für mehrere Genorte (Loci) gleichzeitig zu einem Bruchteil der bisherigen Kosten. Das ist besonders nützlich für die Untersuchung wildlebender Tiere da, selbst wenn nicht ausreichend viele Individuen vorliegen, die gewonnene Menge an Daten genaue und verlässliche Ergebnisse auf Populations- sowie Artebene für eine kleine Auswahl an Individuen liefert. Die Verwendung von NGS zur Untersuchung von Arten, für die bisher wenig oder gar keine vorherigen Forschungsergebnisse vorliegen sowie die Gewinnung neuartiger Informationen im Bereich Evolution ebenso wie die Erstellung eines Referenzdatensatzes, der der wissenschaftlichen Gemeinschaft zur Verfügung gestellt werden kann, waren der Fokus dieser Arbeit. Zwei Studien in dieser Arbeit setzten ihren Fokus in der Gewinnung noch nicht publizierter, mitochondrialer Genome, die mittels iterative mapping erstellt wurden und so das Vorhandensein einer Referenzsequenz eines nahen Verwandten der untersuchten Art unnötig machten. In beiden Fällen wurden Shotgun Sequenzierungsdaten verwendet. Die so gewonnenen mitochondrialen Genome wurden dann genutzt, um innerartliche Verwandtschaftsverhältnisse mit hilfe von phylogenetischen Analysen zu klären. Die erste Studie befasste sich mit der Rekonstruktion des kompletten mitochondrialen Genoms des Löffelhundes (Otocyon megalotis). Die phylogenetische Analyse des mitochondrialen Genoms positionierten den Löffelhund sicher als Schwestergruppe der Klade bestehend aus Marderhund und echten Füchsen innerhalb der Familie Canidae. Die zweite Studie hat sich ebenfalls mit der Rekonstruktion eines mitochondrialen Genoms auseinandergesetzt, diesmal von einer bereits ausgestorbenen Art Südamerikas, dem Macrauchenia. Da diese Studie auf sehr alter DNA (ancient DNA) basiert, schließt sie viele Parametertests, Qualitätskontrollen sowie strenge Filterkriterien ein um ein fast vollständiges mitochondriales Genom erhalten zu können, frei von den für ancient DNA typischen Kontaminationen. Phylogenetische Analysen positionieren Macrauchenia als Schwestergruppe zu allen anderen lebenden Vertretern der Perissodactyla mit einer Abspaltung vor ~66 Millionen Jahren. Die dritte und letzte Studie dieser Arbeit beinhaltet die de novo Konstruktionen von nukleären und mitochondrialen Genomen der Schabracken- und Streifenhyäne mit Fokus auf demographische, genetische Diversität sowie Populationsgenomische Analysen innerhalb der Schabrackenhyänen. Vorausgehende Studien an der Schabrackenhyäne gaben Hinweise für einen geringen Grad an genomischer Diversität und, waren vielleicht deshalb, bisher nicht in der Lage eine nennenswerte Populationsstruktur der Schabrackenhyäne aufzudecken. Zusätzlich wurde die genomische Diversität mit der von einer Reihe anderer Arten verglichen. Die Ergebnisse zeigen, dass die Schabrackenhyäne die niedrigste genomische Diversität aufweist im Vergleich zu den in dieser Studie verwendeten Arten, was vielleicht mit einem kontinuierlichen und fortschreitenden Rückgang der effektiven Populationsgröße dieser Spezies zu erklären ist, der vor ca. einer Million Jahre eingesetzt hat und dramatisch zugenommen hat zum Ende des Pleistozän. Die Studien dieser Arbeit zeigen das Potential von NGS Sequenzierung und ihren Nutzen innerhalb der Evolutionsbiologie. Die nennenswertesten Anwendungen von NGS, die in dieser Arbeit hervorgehoben wurden, sind zum Einen der Nutzen für Organismen bzw. Arten für die es keine verfügbaren Referenzdaten gibt sowie zum Anderen die Gewinnung von großen Datenmengen, die die Grundlage bilden zur Beantwortung evolutionsbiologischer Fragestellungen auf Art- und Populationsebene, was vorhergegangene, traditionelle Methoden bisher nicht leisten konnten. KW - Next generation sequencing KW - Evolution KW - Hyena KW - Evolution KW - Hyäne KW - Sequenzierung der nächsten Generation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409981 ER - TY - GEN A1 - Cahsan, Binia De A1 - Westbury, Michael V. A1 - Paraskevopoulou, Sofia A1 - Drews, Hauke A1 - Ott, Moritz A1 - Gollmann, Günter A1 - Tiedemann, Ralph T1 - Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1168 KW - adaptive introgression KW - admixture KW - Bombina bombina KW - genetic rescue KW - mitogenomes KW - transcriptomics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523140 SN - 1866-8372 IS - 6 ER - TY - GEN A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analía M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - López-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andrés A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Aguilar, José Luis A1 - MacPhee, Ross D.E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 793 KW - ancient DNA KW - evolutionary history KW - genome sequence KW - reveals KW - contamination KW - alignment KW - reads KW - bones Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440801 SN - 1866-8372 IS - 793 ER - TY - GEN A1 - Basler, Nikolas A1 - Xenikoudakis, Georgios A1 - Westbury, Michael V. A1 - Song, Lingfeng A1 - Sheng, Guilian A1 - Barlow, Axel T1 - Reduction of the contaminant fraction of DNA obtained from an ancient giant panda bone T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Objective: A key challenge in ancient DNA research is massive microbial DNA contamination from the deposition site which accumulates post mortem in the study organism’s remains. Two simple and cost-effective methods to enrich the relative endogenous fraction of DNA in ancient samples involve treatment of sample powder with either bleach or Proteinase K pre-digestion prior to DNA extraction. Both approaches have yielded promising but vary-ing results in other studies. Here, we contribute data on the performance of these methods using a comprehensive and systematic series of experiments applied to a single ancient bone fragment from a giant panda (Ailuropoda melanoleuca).Results: Bleach and pre-digestion treatments increased the endogenous DNA content up to ninefold. However, the absolute amount of DNA retrieved was dramatically reduced by all treatments. We also observed reduced DNA damage patterns in pre-treated libraries compared to untreated ones, resulting in longer mean fragment lengths and reduced thymine over-representation at fragment ends. Guanine–cytosine (GC) contents of both mapped and total reads are consistent between treatments and conform to general expectations, indicating no obvious biasing effect of the applied methods. Our results therefore confirm the value of bleach and pre-digestion as tools in palaeog-enomic studies, providing sufficient material is available. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 715 KW - ancient DNA (aDNA) KW - bleach KW - pre-digestion KW - endogenous content KW - palaeogenomics KW - paleogenomics KW - next generation sequencing (NGS) KW - giant panda KW - Ailuropoda melanoleuca Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428151 SN - 1866-8372 IS - 715 ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barnett, Ross A1 - Gilbert, M. Thomas P. A1 - Zepeda-Mendoza, M. Lisandra A1 - Reumer, Jelle W. F. A1 - de Vos, John A1 - Zazula, Grant A1 - Nagel, Doris A1 - Baryshnikov, Gennady F. A1 - Leonard, Jennifer A. A1 - Rohland, Nadin A1 - Westbury, Michael V. A1 - Barlow, Axel A1 - Hofreiter, Michael T1 - Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics JF - Current biology N2 - Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (similar to 18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Y1 - 2017 U6 - https://doi.org/10.1016/j.cub.2017.09.033 SN - 0960-9822 SN - 1879-0445 VL - 27 SP - 3330 EP - + PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analia M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - Lopez-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andres A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Luis Aguilar, Jose A1 - MacPhee, Ross D. E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica JF - Nature Communications N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. Y1 - 2017 U6 - https://doi.org/10.1038/ncomms15951 SN - 2041-1723 VL - 8 PB - Nature Publ. Group CY - London ER - TY - CHAP A1 - Hofreiter, Michael A1 - Barlow, Axel A1 - Paijmans, Johanna L. A. A1 - Westbury, Michael V. T1 - Genomic analyses from highly degraded DNA T2 - Genome Y1 - 2015 SN - 0831-2796 SN - 1480-3321 VL - 58 IS - 5 SP - 228 EP - 228 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Sheng, Gui-Lian A1 - Basler, Nikolas A1 - Ji, Xue-Ping A1 - Paijmans, Johanna L. A. A1 - Alberti, Federica A1 - Preick, Michaela A1 - Hartmann, Stefanie A1 - Westbury, Michael V. A1 - Yuan, Jun-Xia A1 - Jablonski, Nina G. A1 - Xenikoudakis, Georgios A1 - Hou, Xin-Dong A1 - Xiao, Bo A1 - Liu, Jian-Hui A1 - Hofreiter, Michael A1 - Lai, Xu-Long A1 - Barlow, Axel T1 - Paleogenome reveals genetic contribution of extinct giant panda to extant populations JF - Current biology N2 - Historically, the giant panda was widely distributed from northern China to southwestern Asia [1]. As a result of range contraction and fragmentation, extant individuals are currently restricted to fragmented mountain ranges on the eastern margin of the Qinghai-Tibet plateau, where they are distributed among three major population clusters [2]. However, little is known about the genetic consequences of this dramatic range contraction. For example, were regions where giant pandas previously existed occupied by ancestors of present-day populations, or were these regions occupied by genetically distinct populations that are now extinct? If so, is there any contribution of these extinct populations to the genomes of giant pandas living today? To investigate these questions, we sequenced the nuclear genome of an similar to 5,000-year-old giant panda from Jiangdongshan, Teng-chong County in Yunnan Province, China. We find that this individual represents a genetically distinct population that diverged prior to the diversification of modern giant panda populations. We find evidence of differential admixture with this ancient population among modern individuals originating from different populations as well as within the same population. We also find evidence for directional gene flow, which transferred alleles from the ancient population into the modern giant panda lineages. A variable proportion of the genomes of extant individuals is therefore likely derived from the ancient population represented by our sequenced individual. Although extant giant panda populations retain reasonable genetic diversity, our results suggest that this represents only part of the genetic diversity this species harbored prior to its recent range contractions. Y1 - 2019 U6 - https://doi.org/10.1016/j.cub.2019.04.021 SN - 0960-9822 SN - 1879-0445 VL - 29 IS - 10 SP - 1695 EP - 1700 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Folkertsma, Remco A1 - Westbury, Michael V. A1 - Eccard, Jana A1 - Hofreiter, Michael T1 - The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The common vole, Microtus arvalis belongs to the genus Microtus in the subfamily Arvicolinae. In this study, the complete mitochondrial genome of M. arvalis was recovered using shotgun sequencing and an iterative mapping approach using three related species. Phylogenetic analyses using the sequence of 21 arvicoline species place the common vole as a sister species to the East European vole (Microtus levis), but as opposed to previous results we find no support for the recognition of the genus Neodon within the subfamily Arvicolinae, as this is, as well as the genus Lasiopodomys, found within the Microtus genus. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 481 KW - Microtus arvalis KW - Arvicolinae KW - mitochondrial genome KW - common vole KW - phylogeny Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412994 SN - 1866-8372 IS - 481 ER - TY - GEN A1 - Cahsan, Binia De A1 - Kiemel, Katrin A1 - Westbury, Michael V. A1 - Lauritsen, Maike A1 - Autenrieth, Marijke A1 - Gollmann, Günter A1 - Schweiger, Silke A1 - Stenberg, Marika A1 - Nyström, Per A1 - Drews, Hauke A1 - Tiedemann, Ralph T1 - Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Skåne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1177 KW - Bombina bombina KW - heat shock protein KW - introgression KW - major histocompatibility complex KW - scaled mass index Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523883 SN - 1866-8372 IS - 14 ER - TY - JOUR A1 - Cahsan, Binia De A1 - Kiemel, Katrin A1 - Westbury, Michael V. A1 - Lauritsen, Maike A1 - Autenrieth, Marijke A1 - Gollmann, Günter A1 - Schweiger, Silke A1 - Stenberg, Marika A1 - Nyström, Per A1 - Drews, Hauke A1 - Tiedemann, Ralph T1 - Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad JF - Ecology and Evolution N2 - Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Skåne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation. KW - Bombina bombina KW - heat shock protein KW - introgression KW - major histocompatibility complex KW - scaled mass index Y1 - 2021 SN - 2045-7758 VL - 11 IS - 14 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Westbury, Michael V. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Wiesel, Ingrid A1 - Leo, Viyanna A1 - Welch, Rebecca A1 - Parker, Daniel M. A1 - Sicks, Florian A1 - Ludwig, Arne A1 - Dalen, Love A1 - Hofreiter, Michael T1 - Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 589 KW - evolution KW - hyena KW - genomics KW - population genomics KW - diversity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414132 SN - 1866-8372 IS - 589 ER -