TY - JOUR A1 - Yousfi, Alaaeddine A1 - Weske, Mathias T1 - Discovering commute patterns via process mining JF - Knowledge and Information Systems N2 - Ubiquitous computing has proven its relevance and efficiency in improving the user experience across a myriad of situations. It is now the ineluctable solution to keep pace with the ever-changing environments in which current systems operate. Despite the achievements of ubiquitous computing, this discipline is still overlooked in business process management. This is surprising, since many of today’s challenges, in this domain, can be addressed by methods and techniques from ubiquitous computing, for instance user context and dynamic aspects of resource locations. This paper takes a first step to integrate methods and techniques from ubiquitous computing in business process management. To do so, we propose discovering commute patterns via process mining. Through our proposition, we can deduce the users’ significant locations, routes, travel times and travel modes. This information can be a stepping-stone toward helping the business process management community embrace the latest achievements in ubiquitous computing, mainly in location-based service. To corroborate our claims, a user study was conducted. The significant places, routes, travel modes and commuting times of our test subjects were inferred with high accuracies. All in all, ubiquitous computing can enrich the processes with new capabilities that go beyond what has been established in business process management so far. KW - Commute pattern KW - Commute process KW - Process mining KW - Ubiquitous computing KW - Location-based services Y1 - 2019 U6 - https://doi.org/10.1007/s10115-018-1255-1 SN - 0219-1377 SN - 0219-3116 VL - 60 IS - 2 SP - 691 EP - 713 PB - Springer CY - London ER - TY - JOUR A1 - Yousfi, Alaaeddine A1 - Hewelt, Marcin A1 - Bauer, Christine A1 - Weske, Mathias T1 - Toward uBPMN-Based patterns for modeling ubiquitous business processes JF - IEEE Transactions on Industrial Informatics N2 - Ubiquitous business processes are the new generation of processes that pervade the physical space and interact with their environments using a minimum of human involvement. Although they are now widely deployed in the industry, their deployment is still ad hoc . They are implemented after an arbitrary modeling phase or no modeling phase at all. The absence of a solid modeling phase backing up the implementation generates many loopholes that are stressed in the literature. Here, we tackle the issue of modeling ubiquitous business processes. We propose patterns to represent the recent ubiquitous computing features. These patterns are the outcome of an analysis we conducted in the field of human-computer interaction to examine how the features are actually deployed. The patterns' understandability, ease-of-use, usefulness, and completeness are examined via a user experiment. The results indicate that these four indexes are on the positive track. Hence, the patterns may be the backbone of ubiquitous business process modeling in industrial applications. KW - Ubiquitous business process KW - ubiquitous business process model and notation (uBPMN) KW - ubiquitous business process modeling KW - ubiquitous computing (ubicomp) Y1 - 2017 U6 - https://doi.org/10.1109/TII.2017.2777847 SN - 1551-3203 SN - 1941-0050 VL - 14 IS - 8 SP - 3358 EP - 3367 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Yousfi, Alaaeddine A1 - Batoulis, Kimon A1 - Weske, Mathias T1 - Achieving Business Process Improvement via Ubiquitous Decision-Aware Business Processes JF - ACM Transactions on Internet Technology N2 - Business process improvement is an endless challenge for many organizations. As long as there is a process, it must he improved. Nowadays, improvement initiatives are driven by professionals. This is no longer practical because people cannot perceive the enormous data of current business environments. Here, we introduce ubiquitous decision-aware business processes. They pervade the physical space, analyze the ever-changing environments, and make decisions accordingly. We explain how they can be built and used for improvement. Our approach can be a valuable improvement option to alleviate the workload of participants by helping focus on the crucial rather than the menial tasks. KW - Business process improvement KW - ubiquitous decision-aware business process KW - ubiquitous decisions KW - context KW - uBPMN KW - DMN Y1 - 2019 U6 - https://doi.org/10.1145/3298986 SN - 1533-5399 SN - 1557-6051 VL - 19 IS - 1 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Weske, Mathias A1 - van der Aalst, Wil M. P. A1 - Verbeek, H. M. W. T1 - Advances in business process management Y1 - 2004 SN - 0169-023X ER - TY - JOUR A1 - Weidlich, Matthias A1 - Ziekow, Holger A1 - Gal, Avigdor A1 - Mendling, Jan A1 - Weske, Mathias T1 - Optimizing event pattern matching using business process models JF - IEEE transactions on knowledge and data engineering N2 - A growing number of enterprises use complex event processing for monitoring and controlling their operations, while business process models are used to document working procedures. In this work, we propose a comprehensive method for complex event processing optimization using business process models. Our proposed method is based on the extraction of behaviorial constraints that are used, in turn, to rewrite patterns for event detection, and select and transform execution plans. We offer a set of rewriting rules that is shown to be complete with respect to the all, seq, and any patterns. The effectiveness of our method is demonstrated in an experimental evaluation with a large number of processes from an insurance company. We illustrate that the proposed optimization leads to significant savings in query processing. By integrating the optimization in state-of-the-art systems for event pattern matching, we demonstrate that these savings materialize in different technical infrastructures and can be combined with existing optimization techniques. KW - Event processing KW - query optimisation KW - query rewriting Y1 - 2014 U6 - https://doi.org/10.1109/TKDE.2014.2302306 SN - 1041-4347 SN - 1558-2191 VL - 26 IS - 11 SP - 2759 EP - 2773 PB - Inst. of Electr. and Electronics Engineers CY - Los Alamitos ER - TY - JOUR A1 - Weidlich, Matthias A1 - Polyvyanyy, Artem A1 - Mendling, Jan A1 - Weske, Mathias T1 - Causal behavioural profiles - efficient computation, applications, and evaluation JF - Fundamenta informaticae N2 - Analysis of behavioural consistency is an important aspect of software engineering. In process and service management, consistency verification of behavioural models has manifold applications. For instance, a business process model used as system specification and a corresponding workflow model used as implementation have to be consistent. Another example would be the analysis to what degree a process log of executed business operations is consistent with the corresponding normative process model. Typically, existing notions of behaviour equivalence, such as bisimulation and trace equivalence, are applied as consistency notions. Still, these notions are exponential in computation and yield a Boolean result. In many cases, however, a quantification of behavioural deviation is needed along with concepts to isolate the source of deviation. In this article, we propose causal behavioural profiles as the basis for a consistency notion. These profiles capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities of a process model. Consistency based on these profiles is weaker than trace equivalence, but can be computed efficiently for a broad class of models. In this article, we introduce techniques for the computation of causal behavioural profiles using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S-or T-nets. We also elaborate on the findings of applying our technique to three industry model collections. KW - Causal Behavioural Profiles KW - Formal Methods KW - Behavioural Abstraction KW - Structural Decomposition KW - Exclusiveness KW - Concurrency KW - Order Relations KW - Causality KW - Optionality Y1 - 2011 U6 - https://doi.org/10.3233/FI-2011-614 SN - 0169-2968 VL - 113 IS - 3-4 SP - 399 EP - 435 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Weidlich, Matthias A1 - Polyvyanyy, Artem A1 - Desai, Nirmit A1 - Mendling, Jan A1 - Weske, Mathias T1 - Process compliance analysis based on behavioural profiles JF - Information systems N2 - Process compliance measurement is getting increasing attention in companies due to stricter legal requirements and market pressure for operational excellence. In order to judge on compliance of the business processing, the degree of behavioural deviation of a case, i.e., an observed execution sequence, is quantified with respect to a process model (referred to as fitness, or recall). Recently, different compliance measures have been proposed. Still, nearly all of them are grounded on state-based techniques and the trace equivalence criterion, in particular. As a consequence, these approaches have to deal with the state explosion problem. In this paper, we argue that a behavioural abstraction may be leveraged to measure the compliance of a process log - a collection of cases. To this end, we utilise causal behavioural profiles that capture the behavioural characteristics of process models and cases, and can be computed efficiently. We propose different compliance measures based on these profiles, discuss the impact of noise in process logs on our measures, and show how diagnostic information on non-compliance is derived. As a validation, we report on findings of applying our approach in a case study with an international service provider. KW - Process compliance KW - Compliance measurement KW - Log conformance KW - Root cause analysis Y1 - 2011 U6 - https://doi.org/10.1016/j.is.2011.04.002 SN - 0306-4379 VL - 36 IS - 7 SP - 1009 EP - 1025 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Weidlich, Matthias A1 - Mendling, Jan A1 - Weske, Mathias T1 - Efficient consistency measurement based on behavioral profiles of process models JF - IEEE transactions on software engineering N2 - Engineering of process-driven business applications can be supported by process modeling efforts in order to bridge the gap between business requirements and system specifications. However, diverging purposes of business process modeling initiatives have led to significant problems in aligning related models at different abstract levels and different perspectives. Checking the consistency of such corresponding models is a major challenge for process modeling theory and practice. In this paper, we take the inappropriateness of existing strict notions of behavioral equivalence as a starting point. Our contribution is a concept called behavioral profile that captures the essential behavioral constraints of a process model. We show that these profiles can be computed efficiently, i.e., in cubic time for sound free-choice Petri nets w.r.t. their number of places and transitions. We use behavioral profiles for the definition of a formal notion of consistency which is less sensitive to model projections than common criteria of behavioral equivalence and allows for quantifying deviation in a metric way. The derivation of behavioral profiles and the calculation of a degree of consistency have been implemented to demonstrate the applicability of our approach. We also report the findings from checking consistency between partially overlapping models of the SAP reference model. KW - Process model analysis KW - process model alignment KW - behavioral abstraction KW - consistency checking KW - consistency measures Y1 - 2011 U6 - https://doi.org/10.1109/TSE.2010.96 SN - 0098-5589 VL - 37 IS - 3 SP - 410 EP - 429 PB - Inst. of Electr. and Electronics Engineers CY - Los Alamitos ER - TY - JOUR A1 - Weidlich, Matthias A1 - Mendling, Jan A1 - Weske, Mathias T1 - Propagating changes between aligned process models JF - The journal of systems and software N2 - There is a wide variety of drivers for business process modelling initiatives, reaching from organisational redesign to the development of information systems. Consequently, a common business process is often captured in multiple models that overlap in content due to serving different purposes. Business process management aims at flexible adaptation to changing business needs. Hence, changes of business processes occur frequently and have to be incorporated in the respective process models. Once a process model is changed, related process models have to be updated accordingly, despite the fact that those process models may only be loosely coupled. In this article, we introduce an approach that supports change propagation between related process models. Given a change in one process model, we leverage the behavioural abstraction of behavioural profiles for corresponding activities in order to determine a change region in another model. Our approach is able to cope with changes in pairs of models that are not related by hierarchical refinement and show behavioural inconsistencies. We evaluate the applicability of our approach with two real-world process model collections. To this end, we either deduce change operations from different model revisions or rely on synthetic change operations. KW - Change propagation KW - Model synchronisation KW - Behavioural analysis KW - Process model alignment Y1 - 2012 U6 - https://doi.org/10.1016/j.jss.2012.02.044 SN - 0164-1212 VL - 85 IS - 8 SP - 1885 EP - 1898 PB - Elsevier CY - New York ER - TY - JOUR A1 - Weidlich, Matthias A1 - Dijkman, Remco A1 - Weske, Mathias T1 - Behaviour equivalence and compatibility of business process models with complex correspondences JF - The computer journal : a publication of the British Computer Society N2 - Once multiple models of a business process are created for different purposes or to capture different variants, verification of behaviour equivalence or compatibility is needed. Equivalence verification ensures that two business process models specify the same behaviour. Since different process models are likely to differ with respect to their assumed level of abstraction and the actions that they take into account, equivalence notions have to cope with correspondences between sets of actions and actions that exist in one process but not in the other. In this paper, we present notions of equivalence and compatibility that can handle these problems. In essence, we present a notion of equivalence that works on correspondences between sets of actions rather than single actions. We then integrate our equivalence notion with work on behaviour inheritance that copes with actions that exist in one process but not in the other, leading to notions of behaviour compatibility. Compatibility notions verify that two models have the same behaviour with respect to the actions that they have in common. As such, our contribution is a collection of behaviour equivalence and compatibility notions that are applicable in more general settings than existing ones. KW - behaviour equivalence KW - behaviour compatibility KW - model verification KW - behavioural models Y1 - 2012 U6 - https://doi.org/10.1093/comjnl/bxs014 SN - 0010-4620 SN - 1460-2067 VL - 55 IS - 11 SP - 1398 EP - 1418 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Rogge-Solti, Andreas A1 - Weske, Mathias T1 - Prediction of business process durations using non-Markovian stochastic Petri nets JF - Information systems N2 - Companies need to efficiently manage their business processes to deliver products and services in time. Therefore, they monitor the progress of individual cases to be able to timely detect undesired deviations and to react accordingly. For example, companies can decide to speed up process execution by raising alerts or by using additional resources, which increases the chance that a certain deadline or service level agreement can be met. Central to such process control is accurate prediction of the remaining time of a case and the estimation of the risk of missing a deadline. To achieve this goal, we use a specific kind of stochastic Petri nets that can capture arbitrary duration distributions. Thereby, we are able to achieve higher prediction accuracy than related approaches. Further, we evaluate the approach in comparison to state of the art approaches and show the potential of exploiting a so far untapped source of information: the elapsed time since the last observed event. Real-world case studies in the financial and logistics domain serve to illustrate and evaluate the approach presented. (C) 2015 Elsevier Ltd. All rights reserved. KW - Business processes KW - Duration prediction KW - Risk control KW - Stochastic Petri nets Y1 - 2015 U6 - https://doi.org/10.1016/j.is.2015.04.004 SN - 0306-4379 SN - 1873-6076 VL - 54 SP - 1 EP - 14 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Pufahl, Luise A1 - Weske, Mathias T1 - Batch activity: enhancing business process modeling and enactment with batch processing JF - Computing N2 - Organizations strive for efficiency in their business processes by process improvement and automation. Business process management (BPM) supports these efforts by capturing business processes in process models serving as blueprint for a number of process instances. In BPM, process instances are typically considered running independently of each other. However, batch processing-the collectively execution of several instances at specific process activities-is a common phenomenon in operational processes to reduce cost or time. Currently, batch processing is organized manually or hard-coded in software. For allowing stakeholders to explicitly represent their batch configurations in process models and their automatic execution, this paper provides a concept for batch activities and describes the corresponding execution semantics. The batch activity concept is evaluated in a two-step approach: a prototypical implementation in an existing BPM System proves its feasibility. Additionally, batch activities are applied to different use cases in a simulated environment. Its application implies cost-savings when a suitable batch configuration is selected. The batch activity concept contributes to practice by allowing the specification of batch work in process models and their automatic execution, and to research by extending the existing process modeling concepts. KW - Batch activity KW - Batch processing KW - Business process models KW - Process Enactment KW - Colored Petri Net Y1 - 2019 U6 - https://doi.org/10.1007/s00607-019-00717-4 SN - 0010-485X SN - 1436-5057 VL - 101 IS - 12 SP - 1909 EP - 1933 PB - Springer CY - Wien ER - TY - JOUR A1 - Polyvyanyy, Artem A1 - Weidlich, Matthias A1 - Weske, Mathias T1 - Connectivity of workflow nets the foundations of stepwise verification JF - Acta informatica N2 - Behavioral models capture operational principles of real-world or designed systems. Formally, each behavioral model defines the state space of a system, i.e., its states and the principles of state transitions. Such a model is the basis for analysis of the system's properties. In practice, state spaces of systems are immense, which results in huge computational complexity for their analysis. Behavioral models are typically described as executable graphs, whose execution semantics encodes a state space. The structure theory of behavioral models studies the relations between the structure of a model and the properties of its state space. In this article, we use the connectivity property of graphs to achieve an efficient and extensive discovery of the compositional structure of behavioral models; behavioral models get stepwise decomposed into components with clear structural characteristics and inter-component relations. At each decomposition step, the discovered compositional structure of a model is used for reasoning on properties of the whole state space of the system. The approach is exemplified by means of a concrete behavioral model and verification criterion. That is, we analyze workflow nets, a well-established tool for modeling behavior of distributed systems, with respect to the soundness property, a basic correctness property of workflow nets. Stepwise verification allows the detection of violations of the soundness property by inspecting small portions of a model, thereby considerably reducing the amount of work to be done to perform soundness checks. Besides formal results, we also report on findings from applying our approach to an industry model collection. Y1 - 2011 U6 - https://doi.org/10.1007/s00236-011-0137-8 SN - 0001-5903 VL - 48 IS - 4 SP - 213 EP - 242 PB - Springer CY - New York ER - TY - JOUR A1 - Polyvyanyy, Artem A1 - Garcia-Banuelos, Luciano A1 - Fahland, Dirk A1 - Weske, Mathias T1 - Maximal structuring of acyclic process models JF - The computer journal : a publication of the British Computer Society N2 - This article addresses the transformation of a process model with an arbitrary topology into an equivalent structured process model. In particular, this article studies the subclass of process models that have no equivalent well-structured representation but which, nevertheless, can be partially structured into their maximally-structured representation. The transformations are performed under a behavioral equivalence notion that preserves the observed concurrency of tasks in equivalent process models. The article gives a full characterization of the subclass of acyclic process models that have no equivalent well-structured representation, but do have an equivalent maximally-structured one, as well as proposes a complete structuring method. Together with our previous results, this article completes the solution of the process model structuring problem for the class of acyclic process models. KW - process modeling KW - structured process model KW - maximal structuring KW - model transformation KW - fully concurrent bisimulation Y1 - 2014 U6 - https://doi.org/10.1093/comjnl/bxs126 SN - 0010-4620 SN - 1460-2067 VL - 57 IS - 1 SP - 12 EP - 35 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Pernici, Barbara A1 - Weske, Mathias T1 - Business process management Y1 - 2006 SN - 0169-023X ER - TY - JOUR A1 - Nikaj, Adriatik A1 - Weske, Mathias A1 - Mendling, Jan T1 - Semi-automatic derivation of RESTful choreographies from business process choreographies JF - Software and systems modeling N2 - Enterprises reach out for collaborations with other organizations in order to offer complex products and services to the market. Such collaboration and coordination between different organizations, for a good share, is facilitated by information technology. The BPMN process choreography is a modeling language for specifying the exchange of information and services between different organizations at the business level. Recently, there is a surging use of the REST architectural style for the provisioning of services on the web, but few systematic engineering approach to design their collaboration. In this paper, we address this gap in a comprehensive way by defining a semi-automatic method for the derivation of RESTful choreographies from process choreographies. The method is based on natural language analysis techniques to derive interactions from the textual information in process choreographies. The proposed method is evaluated in terms of effectiveness resulting in the intervention of a web engineer in only about 10% of all generated RESTful interactions. KW - Business process choreographies KW - RESTful choreographies KW - Natural language analysis Y1 - 2019 U6 - https://doi.org/10.1007/s10270-017-0653-2 SN - 1619-1366 SN - 1619-1374 VL - 18 IS - 2 SP - 1195 EP - 1208 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Meyer, Andreas A1 - Pufahl, Luise A1 - Batoulis, Kimon A1 - Fahland, Dirk A1 - Weske, Mathias T1 - Automating data exchange in process choreographies JF - Information systems N2 - Communication between organizations is formalized as process choreographies in daily business. While the correct ordering of exchanged messages can be modeled and enacted with current choreography techniques, no approach exists to describe and automate the exchange of data between processes in a choreography using messages. This paper describes an entirely model-driven approach for BPMN introducing a few concepts that suffice to model data retrieval, data transformation, message exchange, and correlation four aspects of data exchange. For automation, this work utilizes a recent concept to enact data dependencies in internal processes. We present a modeling guideline to derive local process models from a given choreography; their operational semantics allows to correctly enact the entire choreography from the derived models only including the exchange of data. Targeting on successful interactions, we discuss means to ensure correct process choreography modeling. Finally, we implemented our approach by extending the camunda BPM platform with our approach and show its feasibility by realizing all service interaction patterns using only model-based concepts. (C) 2015 Elsevier Ltd. All rights reserved. KW - Process modeling KW - Data modeling KW - Process choreographies KW - Data exchange KW - BPMN KW - SQL Y1 - 2015 U6 - https://doi.org/10.1016/j.is.2015.03.008 SN - 0306-4379 SN - 1873-6076 VL - 53 SP - 296 EP - 329 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Mendling, Jan A1 - Weber, Ingo A1 - van der Aalst, Wil A1 - Brocke, Jan Vom A1 - Cabanillas, Cristina A1 - Daniel, Florian A1 - Debois, Soren A1 - Di Ciccio, Claudio A1 - Dumas, Marlon A1 - Dustdar, Schahram A1 - Gal, Avigdor A1 - Garcia-Banuelos, Luciano A1 - Governatori, Guido A1 - Hull, Richard A1 - La Rosa, Marcello A1 - Leopold, Henrik A1 - Leymann, Frank A1 - Recker, Jan A1 - Reichert, Manfred A1 - Reijers, Hajo A. A1 - Rinderle-Ma, Stefanie A1 - Solti, Andreas A1 - Rosemann, Michael A1 - Schulte, Stefan A1 - Singh, Munindar P. A1 - Slaats, Tijs A1 - Staples, Mark A1 - Weber, Barbara A1 - Weidlich, Matthias A1 - Weske, Mathias A1 - Xu, Xiwei A1 - Zhu, Liming T1 - Blockchains for Business Process Management BT - Challenges and Opportunities JF - ACM Transactions on Management Information Systems N2 - Blockchain technology offers a sizable promise to rethink the way interorganizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof, in this article, we outline the challenges and opportunities of blockchain for business process management (BPM). We first reflect how blockchains could be used in the context of the established BPM lifecycle and second how they might become relevant beyond. We conclude our discourse with a summary of seven research directions for investigating the application of blockchain technology in the context of BPM. KW - Blockchain KW - business process management KW - research challenges Y1 - 2018 U6 - https://doi.org/10.1145/3183367 SN - 2158-656X SN - 2158-6578 VL - 9 IS - 1 SP - 1 EP - 16 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Luebbe, Alexander A1 - Weske, Mathias T1 - Determining the effect of tangible business process modeling Y1 - 2012 ER - TY - JOUR A1 - Luebbe, Alexander A1 - Weske, Mathias T1 - Bringing design thinking to business process modeling Y1 - 2011 SN - 978-3-642-13756-3 ER -