TY - JOUR A1 - Andree, Kerstin A1 - Ihde, Sven A1 - Weske, Mathias A1 - Pufahl, Luise T1 - An exception handling framework for case management JF - Software and Systems Modeling N2 - In order to achieve their business goals, organizations heavily rely on the operational excellence of their business processes. In traditional scenarios, business processes are usually well-structured, clearly specifying when and how certain tasks have to be executed. Flexible and knowledge-intensive processes are gathering momentum, where a knowledge worker drives the execution of a process case and determines the exact process path at runtime. In the case of an exception, the knowledge worker decides on an appropriate handling. While there is initial work on exception handling in well-structured business processes, exceptions in case management have not been sufficiently researched. This paper proposes an exception handling framework for stage-oriented case management languages, namely Guard Stage Milestone Model, Case Management Model and Notation, and Fragment-based Case Management. The effectiveness of the framework is evaluated with two real-world use cases showing that it covers all relevant exceptions and proposed handling strategies. KW - Exception handling KW - Knowledge-intensive processes KW - Flexible processes; KW - Case management Y1 - 2022 U6 - https://doi.org/10.1007/s10270-022-00993-3 SN - 1619-1366 SN - 1619-1374 VL - 21 IS - 3 SP - 939 EP - 962 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Bano, Dorina A1 - Michael, Judith A1 - Rumpe, Bernhard A1 - Varga, Simon A1 - Weske, Mathias T1 - Process-aware digital twin cockpit synthesis from event logs JF - Journal of computer languages N2 - The engineering of digital twins and their user interaction parts with explicated processes, namely processaware digital twin cockpits (PADTCs), is challenging due to the complexity of the systems and the need for information from different disciplines within the engineering process. Therefore, it is interesting to investigate how to facilitate their engineering by using already existing data, namely event logs, and reducing the number of manual steps for their engineering. Current research lacks systematic, automated approaches to derive process-aware digital twin cockpits even though some helpful techniques already exist in the areas of process mining and software engineering. Within this paper, we present a low-code development approach that reduces the amount of hand-written code needed and uses process mining techniques to derive PADTCs. We describe what models could be derived from event log data, which generative steps are needed for the engineering of PADTCs, and how process mining could be incorporated into the resulting application. This process is evaluated using the MIMIC III dataset for the creation of a PADTC prototype for an automated hospital transportation system. This approach can be used for early prototyping of PADTCs as it needs no hand-written code in the first place, but it still allows for the iterative evolvement of the application. This empowers domain experts to create their PADTC prototypes. KW - process-aware digital twin cockpit KW - low-code development approaches KW - sensor data KW - event log KW - process mining KW - process-awareness Y1 - 2022 U6 - https://doi.org/10.1016/j.cola.2022.101121 SN - 2590-1184 SN - 2665-9182 VL - 70 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Ihde, Sven A1 - Pufahl, Luise A1 - Völker, Maximilian A1 - Goel, Asvin A1 - Weske, Mathias T1 - A framework for modeling and executing task BT - specific resource allocations in business processes JF - Computing : archives for informatics and numerical computation N2 - As resources are valuable assets, organizations have to decide which resources to allocate to business process tasks in a way that the process is executed not only effectively but also efficiently. Traditional role-based resource allocation leads to effective process executions, since each task is performed by a resource that has the required skills and competencies to do so. However, the resulting allocations are typically not as efficient as they could be, since optimization techniques have yet to find their way in traditional business process management scenarios. On the other hand, operations research provides a rich set of analytical methods for supporting problem-specific decisions on resource allocation. This paper provides a novel framework for creating transparency on existing tasks and resources, supporting individualized allocations for each activity in a process, and the possibility to integrate problem-specific analytical methods of the operations research domain. To validate the framework, the paper reports on the design and prototypical implementation of a software architecture, which extends a traditional process engine with a dedicated resource management component. This component allows us to define specific resource allocation problems at design time, and it also facilitates optimized resource allocation at run time. The framework is evaluated using a real-world parcel delivery process. The evaluation shows that the quality of the allocation results increase significantly with a technique from operations research in contrast to the traditional applied rule-based approach. KW - Process Execution KW - Business Process Management KW - Resource Allocation KW - Resource Management KW - Activity-oriented Optimization Y1 - 2022 U6 - https://doi.org/10.1007/s00607-022-01093-2 SN - 0010-485X SN - 1436-5057 VL - 104 SP - 2405 EP - 2429 PB - Springer CY - Wien ER - TY - JOUR A1 - Ladleif, Jan A1 - Weske, Mathias T1 - Which event happened first? BT - Deferred choice on blockchain using oracles JF - Frontiers in blockchain N2 - First come, first served: Critical choices between alternative actions are often made based on events external to an organization, and reacting promptly to their occurrence can be a major advantage over the competition. In Business Process Management (BPM), such deferred choices can be expressed in process models, and they are an important aspect of process engines. Blockchain-based process execution approaches are no exception to this, but are severely limited by the inherent properties of the platform: The isolated environment prevents direct access to external entities and data, and the non-continual runtime based entirely on atomic transactions impedes the monitoring and detection of events. In this paper we provide an in-depth examination of the semantics of deferred choice, and transfer them to environments such as the blockchain. We introduce and compare several oracle architectures able to satisfy certain requirements, and show that they can be implemented using state-of-the-art blockchain technology. KW - business processes KW - business process management KW - deferred choice KW - workflow patterns KW - blockchain KW - smart contracts KW - oracles KW - formal semantics Y1 - 2021 U6 - https://doi.org/10.3389/fbloc.2021.758169 SN - 2624-7852 VL - 4 SP - 1 EP - 16 PB - Frontiers in Blockchain CY - Lausanne, Schweiz ER - TY - GEN A1 - Ladleif, Jan A1 - Weske, Mathias T1 - Which Event Happened First? Deferred Choice on Blockchain Using Oracles T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - First come, first served: Critical choices between alternative actions are often made based on events external to an organization, and reacting promptly to their occurrence can be a major advantage over the competition. In Business Process Management (BPM), such deferred choices can be expressed in process models, and they are an important aspect of process engines. Blockchain-based process execution approaches are no exception to this, but are severely limited by the inherent properties of the platform: The isolated environment prevents direct access to external entities and data, and the non-continual runtime based entirely on atomic transactions impedes the monitoring and detection of events. In this paper we provide an in-depth examination of the semantics of deferred choice, and transfer them to environments such as the blockchain. We introduce and compare several oracle architectures able to satisfy certain requirements, and show that they can be implemented using state-of-the-art blockchain technology. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 11 KW - business processes KW - business process management KW - deferred choice KW - workflow patterns KW - blockchain KW - smart contracts KW - oracles KW - formal semantics Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-550681 VL - 4 SP - 1 EP - 16 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Haarmann, Stephan A1 - Holfter, Adrian A1 - Pufahl, Luise A1 - Weske, Mathias T1 - Formal framework for checking compliance of data-driven case management JF - Journal on data semantics : JoDS N2 - Business processes are often specified in descriptive or normative models. Both types of models should adhere to internal and external regulations, such as company guidelines or laws. Employing compliance checking techniques, it is possible to verify process models against rules. While traditionally compliance checking focuses on well-structured processes, we address case management scenarios. In case management, knowledge workers drive multi-variant and adaptive processes. Our contribution is based on the fragment-based case management approach, which splits a process into a set of fragments. The fragments are synchronized through shared data but can, otherwise, be dynamically instantiated and executed. We formalize case models using Petri nets. We demonstrate the formalization for design-time and run-time compliance checking and present a proof-of-concept implementation. The application of the implemented compliance checking approach to a use case exemplifies its effectiveness while designing a case model. The empirical evaluation on a set of case models for measuring the performance of the approach shows that rules can often be checked in less than a second. KW - Compliance checking KW - Case management KW - Model verification KW - Data-centric KW - processes Y1 - 2021 U6 - https://doi.org/10.1007/s13740-021-00120-3 SN - 1861-2032 SN - 1861-2040 VL - 10 IS - 1-2 SP - 143 EP - 163 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Combi, Carlo A1 - Oliboni, Barbara A1 - Weske, Mathias A1 - Zerbato, Francesca T1 - Seamless conceptual modeling of processes with transactional and analytical data JF - Data & knowledge engineering N2 - In the field of Business Process Management (BPM), modeling business processes and related data is a critical issue since process activities need to manage data stored in databases. The connection between processes and data is usually handled at the implementation level, even if modeling both processes and data at the conceptual level should help designers in improving business process models and identifying requirements for implementation. Especially in data -and decision-intensive contexts, business process activities need to access data stored both in databases and data warehouses. In this paper, we complete our approach for defining a novel conceptual view that bridges process activities and data. The proposed approach allows the designer to model the connection between business processes and database models and define the operations to perform, providing interesting insights on the overall connected perspective and hints for identifying activities that are crucial for decision support. KW - Conceptual modeling KW - Business process modeling KW - BPMN KW - Data modeling KW - Data warehouse KW - Decision support Y1 - 2021 U6 - https://doi.org/10.1016/j.datak.2021.101895 SN - 0169-023X SN - 1872-6933 VL - 134 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Meinel, Christoph A1 - Döllner, Jürgen Roland Friedrich A1 - Weske, Mathias A1 - Polze, Andreas A1 - Hirschfeld, Robert A1 - Naumann, Felix A1 - Giese, Holger A1 - Baudisch, Patrick A1 - Friedrich, Tobias A1 - Böttinger, Erwin A1 - Lippert, Christoph A1 - Dörr, Christian A1 - Lehmann, Anja A1 - Renard, Bernhard A1 - Rabl, Tilmann A1 - Uebernickel, Falk A1 - Arnrich, Bert A1 - Hölzle, Katharina T1 - Proceedings of the HPI Research School on Service-oriented Systems Engineering 2020 Fall Retreat N2 - Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment. N2 - Der Entwurf und die Realisierung dienstbasierender Architekturen wirft eine Vielzahl von Forschungsfragestellungen aus den Gebieten der Softwaretechnik, der Systemmodellierung und -analyse, sowie der Adaptierbarkeit und Integration von Applikationen auf. Komponentenorientierung und WebServices sind zwei Ansätze für den effizienten Entwurf und die Realisierung komplexer Web-basierender Systeme. Sie ermöglichen die Reaktion auf wechselnde Anforderungen ebenso, wie die Integration großer komplexer Softwaresysteme. "Service-Oriented Systems Engineering" repräsentiert die Symbiose bewährter Praktiken aus den Gebieten der Objektorientierung, der Komponentenprogrammierung, des verteilten Rechnen sowie der Geschäftsprozesse und berücksichtigt auch die Integration von Geschäftsanliegen und Informationstechnologien. Die Klausurtagung des Forschungskollegs "Service-oriented Systems Engineering" findet einmal jährlich statt und bietet allen Kollegiaten die Möglichkeit den Stand ihrer aktuellen Forschung darzulegen. Bedingt durch die Querschnittstruktur des Kollegs deckt dieser Bericht ein weites Spektrum aktueller Forschungsthemen ab. Dazu zählen unter anderem Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; sowie Services Specification, Composition, and Enactment. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 138 KW - Hasso Plattner Institute KW - research school KW - Ph.D. retreat KW - service-oriented systems engineering KW - Hasso-Plattner-Institut KW - Forschungskolleg KW - Klausurtagung KW - Service-oriented Systems Engineering Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-504132 SN - 978-3-86956-513-2 SN - 1613-5652 SN - 2191-1665 IS - 138 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Yousfi, Alaaeddine A1 - Weske, Mathias T1 - Discovering commute patterns via process mining JF - Knowledge and Information Systems N2 - Ubiquitous computing has proven its relevance and efficiency in improving the user experience across a myriad of situations. It is now the ineluctable solution to keep pace with the ever-changing environments in which current systems operate. Despite the achievements of ubiquitous computing, this discipline is still overlooked in business process management. This is surprising, since many of today’s challenges, in this domain, can be addressed by methods and techniques from ubiquitous computing, for instance user context and dynamic aspects of resource locations. This paper takes a first step to integrate methods and techniques from ubiquitous computing in business process management. To do so, we propose discovering commute patterns via process mining. Through our proposition, we can deduce the users’ significant locations, routes, travel times and travel modes. This information can be a stepping-stone toward helping the business process management community embrace the latest achievements in ubiquitous computing, mainly in location-based service. To corroborate our claims, a user study was conducted. The significant places, routes, travel modes and commuting times of our test subjects were inferred with high accuracies. All in all, ubiquitous computing can enrich the processes with new capabilities that go beyond what has been established in business process management so far. KW - Commute pattern KW - Commute process KW - Process mining KW - Ubiquitous computing KW - Location-based services Y1 - 2019 U6 - https://doi.org/10.1007/s10115-018-1255-1 SN - 0219-1377 SN - 0219-3116 VL - 60 IS - 2 SP - 691 EP - 713 PB - Springer CY - London ER - TY - JOUR A1 - Nikaj, Adriatik A1 - Weske, Mathias A1 - Mendling, Jan T1 - Semi-automatic derivation of RESTful choreographies from business process choreographies JF - Software and systems modeling N2 - Enterprises reach out for collaborations with other organizations in order to offer complex products and services to the market. Such collaboration and coordination between different organizations, for a good share, is facilitated by information technology. The BPMN process choreography is a modeling language for specifying the exchange of information and services between different organizations at the business level. Recently, there is a surging use of the REST architectural style for the provisioning of services on the web, but few systematic engineering approach to design their collaboration. In this paper, we address this gap in a comprehensive way by defining a semi-automatic method for the derivation of RESTful choreographies from process choreographies. The method is based on natural language analysis techniques to derive interactions from the textual information in process choreographies. The proposed method is evaluated in terms of effectiveness resulting in the intervention of a web engineer in only about 10% of all generated RESTful interactions. KW - Business process choreographies KW - RESTful choreographies KW - Natural language analysis Y1 - 2019 U6 - https://doi.org/10.1007/s10270-017-0653-2 SN - 1619-1366 SN - 1619-1374 VL - 18 IS - 2 SP - 1195 EP - 1208 PB - Springer CY - Heidelberg ER -