TY - JOUR A1 - Yousfi, Alaaeddine A1 - Weske, Mathias T1 - Discovering commute patterns via process mining JF - Knowledge and Information Systems N2 - Ubiquitous computing has proven its relevance and efficiency in improving the user experience across a myriad of situations. It is now the ineluctable solution to keep pace with the ever-changing environments in which current systems operate. Despite the achievements of ubiquitous computing, this discipline is still overlooked in business process management. This is surprising, since many of today’s challenges, in this domain, can be addressed by methods and techniques from ubiquitous computing, for instance user context and dynamic aspects of resource locations. This paper takes a first step to integrate methods and techniques from ubiquitous computing in business process management. To do so, we propose discovering commute patterns via process mining. Through our proposition, we can deduce the users’ significant locations, routes, travel times and travel modes. This information can be a stepping-stone toward helping the business process management community embrace the latest achievements in ubiquitous computing, mainly in location-based service. To corroborate our claims, a user study was conducted. The significant places, routes, travel modes and commuting times of our test subjects were inferred with high accuracies. All in all, ubiquitous computing can enrich the processes with new capabilities that go beyond what has been established in business process management so far. KW - Commute pattern KW - Commute process KW - Process mining KW - Ubiquitous computing KW - Location-based services Y1 - 2019 U6 - https://doi.org/10.1007/s10115-018-1255-1 SN - 0219-1377 SN - 0219-3116 VL - 60 IS - 2 SP - 691 EP - 713 PB - Springer CY - London ER - TY - JOUR A1 - Yousfi, Alaaeddine A1 - Hewelt, Marcin A1 - Bauer, Christine A1 - Weske, Mathias T1 - Toward uBPMN-Based patterns for modeling ubiquitous business processes JF - IEEE Transactions on Industrial Informatics N2 - Ubiquitous business processes are the new generation of processes that pervade the physical space and interact with their environments using a minimum of human involvement. Although they are now widely deployed in the industry, their deployment is still ad hoc . They are implemented after an arbitrary modeling phase or no modeling phase at all. The absence of a solid modeling phase backing up the implementation generates many loopholes that are stressed in the literature. Here, we tackle the issue of modeling ubiquitous business processes. We propose patterns to represent the recent ubiquitous computing features. These patterns are the outcome of an analysis we conducted in the field of human-computer interaction to examine how the features are actually deployed. The patterns' understandability, ease-of-use, usefulness, and completeness are examined via a user experiment. The results indicate that these four indexes are on the positive track. Hence, the patterns may be the backbone of ubiquitous business process modeling in industrial applications. KW - Ubiquitous business process KW - ubiquitous business process model and notation (uBPMN) KW - ubiquitous business process modeling KW - ubiquitous computing (ubicomp) Y1 - 2017 U6 - https://doi.org/10.1109/TII.2017.2777847 SN - 1551-3203 SN - 1941-0050 VL - 14 IS - 8 SP - 3358 EP - 3367 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Yousfi, Alaaeddine A1 - Batoulis, Kimon A1 - Weske, Mathias T1 - Achieving Business Process Improvement via Ubiquitous Decision-Aware Business Processes JF - ACM Transactions on Internet Technology N2 - Business process improvement is an endless challenge for many organizations. As long as there is a process, it must he improved. Nowadays, improvement initiatives are driven by professionals. This is no longer practical because people cannot perceive the enormous data of current business environments. Here, we introduce ubiquitous decision-aware business processes. They pervade the physical space, analyze the ever-changing environments, and make decisions accordingly. We explain how they can be built and used for improvement. Our approach can be a valuable improvement option to alleviate the workload of participants by helping focus on the crucial rather than the menial tasks. KW - Business process improvement KW - ubiquitous decision-aware business process KW - ubiquitous decisions KW - context KW - uBPMN KW - DMN Y1 - 2019 U6 - https://doi.org/10.1145/3298986 SN - 1533-5399 SN - 1557-6051 VL - 19 IS - 1 PB - Association for Computing Machinery CY - New York ER - TY - INPR A1 - Weske, Mathias A1 - Yang, Jian A1 - Maglio, Paul P. T1 - Special issue service oriented computing (ICSOC) guest editors' introduction T2 - International journal of cooperative information systems Y1 - 2012 U6 - https://doi.org/10.1142/S0218843012020017 SN - 0218-8430 VL - 21 IS - 1 SP - 1 EP - 2 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Weske, Mathias A1 - van der Aalst, Wil M. P. A1 - Verbeek, H. M. W. T1 - Advances in business process management Y1 - 2004 SN - 0169-023X ER - TY - GEN A1 - Weske, Mathias A1 - Sadiq, Shazia A1 - Soffer, Pnina A1 - Voelzer, Hagen T1 - Preface to BPM 2014 T2 - Information systems Y1 - 2016 U6 - https://doi.org/10.1016/j.is.2015.09.006 SN - 0306-4379 SN - 1873-6076 VL - 56 SP - 233 EP - 234 PB - Elsevier CY - Oxford ER - TY - INPR A1 - Weske, Mathias A1 - Rinderle-Ma, Stefanie A1 - Toumani, Farouk A1 - Wolf, Karsten T1 - Special section on BPM 2011 conference. - Special Issue T2 - Information systems Y1 - 2013 U6 - https://doi.org/10.1016/j.is.2013.01.003 SN - 0306-4379 VL - 38 IS - 4 SP - 545 EP - 546 PB - Elsevier CY - Oxford ER - TY - BOOK A1 - Weske, Mathias T1 - Business Process Management : Concepts, Languages, Architectures Y1 - 2007 SN - 978-3-540-73521-2 U6 - https://doi.org/10.1007/978-3-540-73522-9 PB - Springer-Verlag Berlin Heidelberg CY - Berlin, Heidelberg ER - TY - JOUR A1 - Weidlich, Matthias A1 - Ziekow, Holger A1 - Gal, Avigdor A1 - Mendling, Jan A1 - Weske, Mathias T1 - Optimizing event pattern matching using business process models JF - IEEE transactions on knowledge and data engineering N2 - A growing number of enterprises use complex event processing for monitoring and controlling their operations, while business process models are used to document working procedures. In this work, we propose a comprehensive method for complex event processing optimization using business process models. Our proposed method is based on the extraction of behaviorial constraints that are used, in turn, to rewrite patterns for event detection, and select and transform execution plans. We offer a set of rewriting rules that is shown to be complete with respect to the all, seq, and any patterns. The effectiveness of our method is demonstrated in an experimental evaluation with a large number of processes from an insurance company. We illustrate that the proposed optimization leads to significant savings in query processing. By integrating the optimization in state-of-the-art systems for event pattern matching, we demonstrate that these savings materialize in different technical infrastructures and can be combined with existing optimization techniques. KW - Event processing KW - query optimisation KW - query rewriting Y1 - 2014 U6 - https://doi.org/10.1109/TKDE.2014.2302306 SN - 1041-4347 SN - 1558-2191 VL - 26 IS - 11 SP - 2759 EP - 2773 PB - Inst. of Electr. and Electronics Engineers CY - Los Alamitos ER - TY - JOUR A1 - Weidlich, Matthias A1 - Polyvyanyy, Artem A1 - Mendling, Jan A1 - Weske, Mathias T1 - Causal behavioural profiles - efficient computation, applications, and evaluation JF - Fundamenta informaticae N2 - Analysis of behavioural consistency is an important aspect of software engineering. In process and service management, consistency verification of behavioural models has manifold applications. For instance, a business process model used as system specification and a corresponding workflow model used as implementation have to be consistent. Another example would be the analysis to what degree a process log of executed business operations is consistent with the corresponding normative process model. Typically, existing notions of behaviour equivalence, such as bisimulation and trace equivalence, are applied as consistency notions. Still, these notions are exponential in computation and yield a Boolean result. In many cases, however, a quantification of behavioural deviation is needed along with concepts to isolate the source of deviation. In this article, we propose causal behavioural profiles as the basis for a consistency notion. These profiles capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities of a process model. Consistency based on these profiles is weaker than trace equivalence, but can be computed efficiently for a broad class of models. In this article, we introduce techniques for the computation of causal behavioural profiles using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S-or T-nets. We also elaborate on the findings of applying our technique to three industry model collections. KW - Causal Behavioural Profiles KW - Formal Methods KW - Behavioural Abstraction KW - Structural Decomposition KW - Exclusiveness KW - Concurrency KW - Order Relations KW - Causality KW - Optionality Y1 - 2011 U6 - https://doi.org/10.3233/FI-2011-614 SN - 0169-2968 VL - 113 IS - 3-4 SP - 399 EP - 435 PB - IOS Press CY - Amsterdam ER -