TY - JOUR A1 - Weidlich, Matthias A1 - Dijkman, Remco A1 - Weske, Mathias T1 - Behaviour equivalence and compatibility of business process models with complex correspondences JF - The computer journal : a publication of the British Computer Society N2 - Once multiple models of a business process are created for different purposes or to capture different variants, verification of behaviour equivalence or compatibility is needed. Equivalence verification ensures that two business process models specify the same behaviour. Since different process models are likely to differ with respect to their assumed level of abstraction and the actions that they take into account, equivalence notions have to cope with correspondences between sets of actions and actions that exist in one process but not in the other. In this paper, we present notions of equivalence and compatibility that can handle these problems. In essence, we present a notion of equivalence that works on correspondences between sets of actions rather than single actions. We then integrate our equivalence notion with work on behaviour inheritance that copes with actions that exist in one process but not in the other, leading to notions of behaviour compatibility. Compatibility notions verify that two models have the same behaviour with respect to the actions that they have in common. As such, our contribution is a collection of behaviour equivalence and compatibility notions that are applicable in more general settings than existing ones. KW - behaviour equivalence KW - behaviour compatibility KW - model verification KW - behavioural models Y1 - 2012 U6 - https://doi.org/10.1093/comjnl/bxs014 SN - 0010-4620 SN - 1460-2067 VL - 55 IS - 11 SP - 1398 EP - 1418 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Mendling, Jan A1 - Weber, Ingo A1 - van der Aalst, Wil A1 - Brocke, Jan Vom A1 - Cabanillas, Cristina A1 - Daniel, Florian A1 - Debois, Soren A1 - Di Ciccio, Claudio A1 - Dumas, Marlon A1 - Dustdar, Schahram A1 - Gal, Avigdor A1 - Garcia-Banuelos, Luciano A1 - Governatori, Guido A1 - Hull, Richard A1 - La Rosa, Marcello A1 - Leopold, Henrik A1 - Leymann, Frank A1 - Recker, Jan A1 - Reichert, Manfred A1 - Reijers, Hajo A. A1 - Rinderle-Ma, Stefanie A1 - Solti, Andreas A1 - Rosemann, Michael A1 - Schulte, Stefan A1 - Singh, Munindar P. A1 - Slaats, Tijs A1 - Staples, Mark A1 - Weber, Barbara A1 - Weidlich, Matthias A1 - Weske, Mathias A1 - Xu, Xiwei A1 - Zhu, Liming T1 - Blockchains for Business Process Management BT - Challenges and Opportunities JF - ACM Transactions on Management Information Systems N2 - Blockchain technology offers a sizable promise to rethink the way interorganizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof, in this article, we outline the challenges and opportunities of blockchain for business process management (BPM). We first reflect how blockchains could be used in the context of the established BPM lifecycle and second how they might become relevant beyond. We conclude our discourse with a summary of seven research directions for investigating the application of blockchain technology in the context of BPM. KW - Blockchain KW - business process management KW - research challenges Y1 - 2018 U6 - https://doi.org/10.1145/3183367 SN - 2158-656X SN - 2158-6578 VL - 9 IS - 1 SP - 1 EP - 16 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Weidlich, Matthias A1 - Polyvyanyy, Artem A1 - Mendling, Jan A1 - Weske, Mathias T1 - Causal behavioural profiles - efficient computation, applications, and evaluation JF - Fundamenta informaticae N2 - Analysis of behavioural consistency is an important aspect of software engineering. In process and service management, consistency verification of behavioural models has manifold applications. For instance, a business process model used as system specification and a corresponding workflow model used as implementation have to be consistent. Another example would be the analysis to what degree a process log of executed business operations is consistent with the corresponding normative process model. Typically, existing notions of behaviour equivalence, such as bisimulation and trace equivalence, are applied as consistency notions. Still, these notions are exponential in computation and yield a Boolean result. In many cases, however, a quantification of behavioural deviation is needed along with concepts to isolate the source of deviation. In this article, we propose causal behavioural profiles as the basis for a consistency notion. These profiles capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities of a process model. Consistency based on these profiles is weaker than trace equivalence, but can be computed efficiently for a broad class of models. In this article, we introduce techniques for the computation of causal behavioural profiles using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S-or T-nets. We also elaborate on the findings of applying our technique to three industry model collections. KW - Causal Behavioural Profiles KW - Formal Methods KW - Behavioural Abstraction KW - Structural Decomposition KW - Exclusiveness KW - Concurrency KW - Order Relations KW - Causality KW - Optionality Y1 - 2011 U6 - https://doi.org/10.3233/FI-2011-614 SN - 0169-2968 VL - 113 IS - 3-4 SP - 399 EP - 435 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Polyvyanyy, Artem A1 - Weidlich, Matthias A1 - Weske, Mathias T1 - Connectivity of workflow nets the foundations of stepwise verification JF - Acta informatica N2 - Behavioral models capture operational principles of real-world or designed systems. Formally, each behavioral model defines the state space of a system, i.e., its states and the principles of state transitions. Such a model is the basis for analysis of the system's properties. In practice, state spaces of systems are immense, which results in huge computational complexity for their analysis. Behavioral models are typically described as executable graphs, whose execution semantics encodes a state space. The structure theory of behavioral models studies the relations between the structure of a model and the properties of its state space. In this article, we use the connectivity property of graphs to achieve an efficient and extensive discovery of the compositional structure of behavioral models; behavioral models get stepwise decomposed into components with clear structural characteristics and inter-component relations. At each decomposition step, the discovered compositional structure of a model is used for reasoning on properties of the whole state space of the system. The approach is exemplified by means of a concrete behavioral model and verification criterion. That is, we analyze workflow nets, a well-established tool for modeling behavior of distributed systems, with respect to the soundness property, a basic correctness property of workflow nets. Stepwise verification allows the detection of violations of the soundness property by inspecting small portions of a model, thereby considerably reducing the amount of work to be done to perform soundness checks. Besides formal results, we also report on findings from applying our approach to an industry model collection. Y1 - 2011 U6 - https://doi.org/10.1007/s00236-011-0137-8 SN - 0001-5903 VL - 48 IS - 4 SP - 213 EP - 242 PB - Springer CY - New York ER - TY - JOUR A1 - Weidlich, Matthias A1 - Mendling, Jan A1 - Weske, Mathias T1 - Efficient consistency measurement based on behavioral profiles of process models JF - IEEE transactions on software engineering N2 - Engineering of process-driven business applications can be supported by process modeling efforts in order to bridge the gap between business requirements and system specifications. However, diverging purposes of business process modeling initiatives have led to significant problems in aligning related models at different abstract levels and different perspectives. Checking the consistency of such corresponding models is a major challenge for process modeling theory and practice. In this paper, we take the inappropriateness of existing strict notions of behavioral equivalence as a starting point. Our contribution is a concept called behavioral profile that captures the essential behavioral constraints of a process model. We show that these profiles can be computed efficiently, i.e., in cubic time for sound free-choice Petri nets w.r.t. their number of places and transitions. We use behavioral profiles for the definition of a formal notion of consistency which is less sensitive to model projections than common criteria of behavioral equivalence and allows for quantifying deviation in a metric way. The derivation of behavioral profiles and the calculation of a degree of consistency have been implemented to demonstrate the applicability of our approach. We also report the findings from checking consistency between partially overlapping models of the SAP reference model. KW - Process model analysis KW - process model alignment KW - behavioral abstraction KW - consistency checking KW - consistency measures Y1 - 2011 U6 - https://doi.org/10.1109/TSE.2010.96 SN - 0098-5589 VL - 37 IS - 3 SP - 410 EP - 429 PB - Inst. of Electr. and Electronics Engineers CY - Los Alamitos ER - TY - JOUR A1 - Weidlich, Matthias A1 - Ziekow, Holger A1 - Gal, Avigdor A1 - Mendling, Jan A1 - Weske, Mathias T1 - Optimizing event pattern matching using business process models JF - IEEE transactions on knowledge and data engineering N2 - A growing number of enterprises use complex event processing for monitoring and controlling their operations, while business process models are used to document working procedures. In this work, we propose a comprehensive method for complex event processing optimization using business process models. Our proposed method is based on the extraction of behaviorial constraints that are used, in turn, to rewrite patterns for event detection, and select and transform execution plans. We offer a set of rewriting rules that is shown to be complete with respect to the all, seq, and any patterns. The effectiveness of our method is demonstrated in an experimental evaluation with a large number of processes from an insurance company. We illustrate that the proposed optimization leads to significant savings in query processing. By integrating the optimization in state-of-the-art systems for event pattern matching, we demonstrate that these savings materialize in different technical infrastructures and can be combined with existing optimization techniques. KW - Event processing KW - query optimisation KW - query rewriting Y1 - 2014 U6 - https://doi.org/10.1109/TKDE.2014.2302306 SN - 1041-4347 SN - 1558-2191 VL - 26 IS - 11 SP - 2759 EP - 2773 PB - Inst. of Electr. and Electronics Engineers CY - Los Alamitos ER - TY - JOUR A1 - Weidlich, Matthias A1 - Polyvyanyy, Artem A1 - Desai, Nirmit A1 - Mendling, Jan A1 - Weske, Mathias T1 - Process compliance analysis based on behavioural profiles JF - Information systems N2 - Process compliance measurement is getting increasing attention in companies due to stricter legal requirements and market pressure for operational excellence. In order to judge on compliance of the business processing, the degree of behavioural deviation of a case, i.e., an observed execution sequence, is quantified with respect to a process model (referred to as fitness, or recall). Recently, different compliance measures have been proposed. Still, nearly all of them are grounded on state-based techniques and the trace equivalence criterion, in particular. As a consequence, these approaches have to deal with the state explosion problem. In this paper, we argue that a behavioural abstraction may be leveraged to measure the compliance of a process log - a collection of cases. To this end, we utilise causal behavioural profiles that capture the behavioural characteristics of process models and cases, and can be computed efficiently. We propose different compliance measures based on these profiles, discuss the impact of noise in process logs on our measures, and show how diagnostic information on non-compliance is derived. As a validation, we report on findings of applying our approach in a case study with an international service provider. KW - Process compliance KW - Compliance measurement KW - Log conformance KW - Root cause analysis Y1 - 2011 U6 - https://doi.org/10.1016/j.is.2011.04.002 SN - 0306-4379 VL - 36 IS - 7 SP - 1009 EP - 1025 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Weidlich, Matthias A1 - Mendling, Jan A1 - Weske, Mathias T1 - Propagating changes between aligned process models JF - The journal of systems and software N2 - There is a wide variety of drivers for business process modelling initiatives, reaching from organisational redesign to the development of information systems. Consequently, a common business process is often captured in multiple models that overlap in content due to serving different purposes. Business process management aims at flexible adaptation to changing business needs. Hence, changes of business processes occur frequently and have to be incorporated in the respective process models. Once a process model is changed, related process models have to be updated accordingly, despite the fact that those process models may only be loosely coupled. In this article, we introduce an approach that supports change propagation between related process models. Given a change in one process model, we leverage the behavioural abstraction of behavioural profiles for corresponding activities in order to determine a change region in another model. Our approach is able to cope with changes in pairs of models that are not related by hierarchical refinement and show behavioural inconsistencies. We evaluate the applicability of our approach with two real-world process model collections. To this end, we either deduce change operations from different model revisions or rely on synthetic change operations. KW - Change propagation KW - Model synchronisation KW - Behavioural analysis KW - Process model alignment Y1 - 2012 U6 - https://doi.org/10.1016/j.jss.2012.02.044 SN - 0164-1212 VL - 85 IS - 8 SP - 1885 EP - 1898 PB - Elsevier CY - New York ER - TY - JOUR A1 - Kunze, Matthias A1 - Weidlich, Matthias A1 - Weske, Mathias T1 - Querying process models by behavior inclusion JF - Software and systems modeling N2 - Business processes are vital to managing organizations as they sustain a company's competitiveness. Consequently, these organizations maintain collections of hundreds or thousands of process models for streamlining working procedures and facilitating process implementation. Yet, the management of large process model collections requires effective searching capabilities. Recent research focused on similarity search of process models, but querying process models is still a largely open topic. This article presents an approach to querying process models that takes a process example as input and discovers all models that allow replaying the behavior of the query. To this end, we provide a notion of behavioral inclusion that is based on trace semantics and abstraction. Additional to deciding a match, a closeness score is provided that describes how well the behavior of the query is represented in the model and can be used for ranking. The article introduces the formal foundations of the approach and shows how they are applied to querying large process model collections. An experimental evaluation has been conducted that confirms the suitability of the solution as well as its applicability and scalability in practice. KW - Process model search KW - Behavioral querying KW - Trace inclusion KW - Process model repositories Y1 - 2015 U6 - https://doi.org/10.1007/s10270-013-0389-6 SN - 1619-1366 SN - 1619-1374 VL - 14 IS - 3 SP - 1105 EP - 1125 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Awad, Ahmed Mahmoud Hany Aly A1 - Weidlich, Matthias A1 - Weske, Mathias T1 - Visually specifying compliance rules and explaining their violations for business processes JF - Journal of visual languages and computing N2 - A business process is a set of steps designed to be executed in a certain order to achieve a business value. Such processes are often driven by and documented using process models. Nowadays, process models are also applied to drive process execution. Thus, correctness of business process models is a must. Much of the work has been devoted to check general, domain-independent correctness criteria, such as soundness. However, business processes must also adhere to and show compliance with various regulations and constraints, the so-called compliance requirements. These are domain-dependent requirements. In many situations, verifying compliance on a model level is of great value, since violations can be resolved in an early stage prior to execution. However, this calls for using formal verification techniques, e.g., model checking, that are too complex for business experts to apply. In this paper, we utilize a visual language. BPMN-Q to express compliance requirements visually in a way similar to that used by business experts to build process models. Still, using a pattern based approach, each BPMN-Qgraph has a formal temporal logic expression in computational tree logic (CTL). Moreover, the user is able to express constraints, i.e., compliance rules, regarding control flow and data flow aspects. In order to provide valuable feedback to a user in case of violations, we depend on temporal logic querying approaches as well as BPMN-Q to visually highlight paths in a process model whose execution causes violations. KW - Business process modeling KW - Compliance checking KW - Visual modeling KW - Anti-patterns Y1 - 2011 U6 - https://doi.org/10.1016/j.jvlc.2010.11.002 SN - 1045-926X VL - 22 IS - 1 SP - 30 EP - 55 PB - Elsevier CY - London ER -