TY - JOUR A1 - Yousfi, Alaaeddine A1 - Weske, Mathias T1 - Discovering commute patterns via process mining JF - Knowledge and Information Systems N2 - Ubiquitous computing has proven its relevance and efficiency in improving the user experience across a myriad of situations. It is now the ineluctable solution to keep pace with the ever-changing environments in which current systems operate. Despite the achievements of ubiquitous computing, this discipline is still overlooked in business process management. This is surprising, since many of today’s challenges, in this domain, can be addressed by methods and techniques from ubiquitous computing, for instance user context and dynamic aspects of resource locations. This paper takes a first step to integrate methods and techniques from ubiquitous computing in business process management. To do so, we propose discovering commute patterns via process mining. Through our proposition, we can deduce the users’ significant locations, routes, travel times and travel modes. This information can be a stepping-stone toward helping the business process management community embrace the latest achievements in ubiquitous computing, mainly in location-based service. To corroborate our claims, a user study was conducted. The significant places, routes, travel modes and commuting times of our test subjects were inferred with high accuracies. All in all, ubiquitous computing can enrich the processes with new capabilities that go beyond what has been established in business process management so far. KW - Commute pattern KW - Commute process KW - Process mining KW - Ubiquitous computing KW - Location-based services Y1 - 2019 U6 - https://doi.org/10.1007/s10115-018-1255-1 SN - 0219-1377 SN - 0219-3116 VL - 60 IS - 2 SP - 691 EP - 713 PB - Springer CY - London ER - TY - JOUR A1 - Baier, Thomas A1 - Di Ciccio, Claudio A1 - Mendling, Jan A1 - Weske, Mathias T1 - Matching events and activities by integrating behavioral aspects and label analysis JF - Software and systems modeling N2 - Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using insights from behavioral analysis and label analysis. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. These mappings are further reduced using techniques from natural language processing, which allow for a matching based on labels and external knowledge sources. The evaluation with synthetic and real-life data demonstrates the effectiveness of the approach and its robustness toward non-conforming execution logs. KW - Process mining KW - Event mapping KW - Business process intelligence KW - Constraint satisfaction KW - Declare KW - Natural language processing Y1 - 2018 U6 - https://doi.org/10.1007/s10270-017-0603-z SN - 1619-1366 SN - 1619-1374 VL - 17 IS - 2 SP - 573 EP - 598 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Mendling, Jan A1 - Weber, Ingo A1 - van der Aalst, Wil A1 - Brocke, Jan Vom A1 - Cabanillas, Cristina A1 - Daniel, Florian A1 - Debois, Soren A1 - Di Ciccio, Claudio A1 - Dumas, Marlon A1 - Dustdar, Schahram A1 - Gal, Avigdor A1 - Garcia-Banuelos, Luciano A1 - Governatori, Guido A1 - Hull, Richard A1 - La Rosa, Marcello A1 - Leopold, Henrik A1 - Leymann, Frank A1 - Recker, Jan A1 - Reichert, Manfred A1 - Reijers, Hajo A. A1 - Rinderle-Ma, Stefanie A1 - Solti, Andreas A1 - Rosemann, Michael A1 - Schulte, Stefan A1 - Singh, Munindar P. A1 - Slaats, Tijs A1 - Staples, Mark A1 - Weber, Barbara A1 - Weidlich, Matthias A1 - Weske, Mathias A1 - Xu, Xiwei A1 - Zhu, Liming T1 - Blockchains for Business Process Management BT - Challenges and Opportunities JF - ACM Transactions on Management Information Systems N2 - Blockchain technology offers a sizable promise to rethink the way interorganizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof, in this article, we outline the challenges and opportunities of blockchain for business process management (BPM). We first reflect how blockchains could be used in the context of the established BPM lifecycle and second how they might become relevant beyond. We conclude our discourse with a summary of seven research directions for investigating the application of blockchain technology in the context of BPM. KW - Blockchain KW - business process management KW - research challenges Y1 - 2018 U6 - https://doi.org/10.1145/3183367 SN - 2158-656X SN - 2158-6578 VL - 9 IS - 1 SP - 1 EP - 16 PB - Association for Computing Machinery CY - New York ER - TY - BOOK A1 - Meyer, Andreas A1 - Smirnov, Sergey A1 - Weske, Mathias T1 - Data in business processes N2 - Process and data are equally important for business process management. Process data is especially relevant in the context of automated business processes, process controlling, and representation of organizations' core assets. One can discover many process modeling languages, each having a specific set of data modeling capabilities and the level of data awareness. The level of data awareness and data modeling capabilities vary significantly from one language to another. This paper evaluates several process modeling languages with respect to the role of data. To find a common ground for comparison, we develop a framework, which systematically organizes process- and data-related aspects of the modeling languages elaborating on the data aspects. Once the framework is in place, we compare twelve process modeling languages against it. We generalize the results of the comparison and identify clusters of similar languages with respect to data awareness. N2 - Prozesse und Daten sind gleichermaßen wichtig für das Geschäftsprozessmanagement. Prozessdaten sind dabei insbesondere im Kontext der Automatisierung von Geschäftsprozessen, dem Prozesscontrolling und der Repräsentation der Vermögensgegenstände von Organisationen relevant. Es existieren viele Prozessmodellierungssprachen, von denen jede die Darstellung von Daten durch eine fest spezifizierte Menge an Modellierungskonstrukten ermöglicht. Allerdings unterscheiden sich diese Darstellungenund damit der Grad der Datenmodellierung stark untereinander. Dieser Report evaluiert verschiedene Prozessmodellierungssprachen bezüglich der Unterstützung von Datenmodellierung. Als einheitliche Grundlage entwickeln wir ein Framework, welches prozess- und datenrelevante Aspekte systematisch organisiert. Die Kriterien legen dabei das Hauptaugenmerk auf die datenrelevanten Aspekte. Nach Einführung des Frameworks vergleichen wir zwölf Prozessmodellierungssprachen gegen dieses. Wir generalisieren die Erkenntnisse aus den Vergleichen und identifizieren Cluster bezüglich des Grades der Datenmodellierung, in welche die einzelnen Sprachen eingeordnet werden. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 50 KW - business process modeling KW - process modeling languages KW - data modeling KW - data in business processes Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53046 SN - 978-3-86956-144-8 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Kunze, Matthias A1 - Weske, Mathias T1 - Behavioural Models BT - From Modelling Finite Automata to Analysing Business Processes N2 - This textbook introduces the basis for modelling and analysing discrete dynamic systems, such as computer programmes, soft- and hardware systems, and business processes. The underlying concepts are introduced and concrete modelling techniques are described, such as finite automata, state machines, and Petri nets. The concepts are related to concrete application scenarios, among which business processes play a prominent role. The book consists of three parts, the first of which addresses the foundations of behavioural modelling. After a general introduction to modelling, it introduces transition systems as a basic formalism for representing the behaviour of discrete dynamic systems. This section also discusses causality, a fundamental concept for modelling and reasoning about behaviour. In turn, Part II forms the heart of the book and is devoted to models of behaviour. It details both sequential and concurrent systems and introduces finite automata, state machines and several different types of Petri nets. One chapter is especially devoted to business process models, workflow patterns and BPMN, the industry standard for modelling business processes. Lastly, Part III investigates how the behaviour of systems can be analysed. To this end, it introduces readers to the concept of state spaces. Further chapters cover the comparison of behaviour and the formal analysis and verification of behavioural models. The book was written for students of computer science and software engineering, as well as for programmers and system analysts interested in the behaviour of the systems they work on. It takes readers on a journey from the fundamentals of behavioural modelling to advanced techniques for modelling and analysing sequential and concurrent systems, and thus provides them a deep understanding of the concepts and techniques introduced and how they can be applied to concrete application scenarios. Y1 - 2016 SN - 978-3-319-44958-6 PB - Springer CY - Cham ER - TY - BOOK A1 - Weske, Mathias T1 - Business Process Management : Concepts, Languages, Architectures Y1 - 2007 SN - 978-3-540-73521-2 U6 - https://doi.org/10.1007/978-3-540-73522-9 PB - Springer-Verlag Berlin Heidelberg CY - Berlin, Heidelberg ER - TY - JOUR A1 - Pernici, Barbara A1 - Weske, Mathias T1 - Business process management Y1 - 2006 SN - 0169-023X ER - TY - JOUR A1 - Weske, Mathias A1 - van der Aalst, Wil M. P. A1 - Verbeek, H. M. W. T1 - Advances in business process management Y1 - 2004 SN - 0169-023X ER - TY - BOOK A1 - Smirnov, Sergey A1 - Reijers, Hajo A. A1 - Nugteren, Thijs A1 - Weske, Mathias T1 - Business process model abstraction : theory and practice N2 - Business process management aims at capturing, understanding, and improving work in organizations. The central artifacts are process models, which serve different purposes. Detailed process models are used to analyze concrete working procedures, while high-level models show, for instance, handovers between departments. To provide different views on process models, business process model abstraction has emerged. While several approaches have been proposed, a number of abstraction use case that are both relevant for industry and scientifically challenging are yet to be addressed. In this paper we systematically develop, classify, and consolidate different use cases for business process model abstraction. The reported work is based on a study with BPM users in the health insurance sector and validated with a BPM consultancy company and a large BPM vendor. The identified fifteen abstraction use cases reflect the industry demand. The related work on business process model abstraction is evaluated against the use cases, which leads to a research agenda. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 35 Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-41782 SN - 978-3-86956-054-0 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Herzberg, Nico A1 - Weske, Mathias T1 - Enriching raw events to enable process intelligence : research challenges N2 - Business processes are performed within a company’s daily business. Thereby, valuable data about the process execution is produced. The quantity and quality of this data is very dependent on the process execution environment that reaches from predominantly manual to fullautomated. Process improvement is one essential cornerstone of business process management to ensure companies’ competitiveness and relies on information about the process execution. Especially in manual process environments data directly related to the process execution is rather sparse and incomplete. In this paper, we present an approach that supports the usage and enrichment of process execution data with context data – data that exists orthogonally to business process data – and knowledge from the corresponding process models to provide a high-quality event base for process intelligence subsuming, among others, process monitoring, process analysis, and process mining. Further, we discuss open issues and challenges that are subject to our future work. N2 - Die wertschöpfenden Tätigkeiten in Unternehmen folgen definierten Geschäftsprozessen und werden entsprechend ausgeführt. Dabei werden wertvolle Daten über die Prozessausführung erzeugt. Die Menge und Qualität dieser Daten ist sehr stark von der Prozessausführungsumgebung abhängig, welche überwiegend manuell als auch vollautomatisiert sein kann. Die stetige Verbesserung von Prozessen ist einer der Hauptpfeiler des Business Process Managements, mit der Aufgabe die Wettbewerbsfähigkeit von Unternehmen zu sichern und zu steigern. Um Prozesse zu verbessern muss man diese analysieren und ist auf Daten der Prozessausführung angewiesen. Speziell bei manueller Prozessausführung sind die Daten nur selten direkt zur konkreten Prozessausführung verknüpft. In dieser Arbeit präsentieren wir einen Ansatz zur Verwendung und Anreicherung von Prozessausführungsdaten mit Kontextdaten – Daten die unabhängig zu den Prozessdaten existieren – und Wissen aus den dazugehörigen Prozessmodellen, um ein hochwertige Event- Datenbasis für Process Intelligence Anwendungen, wie zum Beispiel Prozessmonitoring, Prozessanalyse und Process Mining, sicherstellen zu können. Des Weiteren zeigen wir offene Fragestellungen und Herausforderungen auf, welche in Zukunft Gegenstand unserer Forschung sein werden. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 73 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-64012 SN - 978-3-86956-241-4 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Meyer, Andreas A1 - Pufahl, Luise A1 - Fahland, Dirk A1 - Weske, Mathias T1 - Modeling and enacting complex data dependencies in business processes N2 - Enacting business processes in process engines requires the coverage of control flow, resource assignments, and process data. While the first two aspects are well supported in current process engines, data dependencies need to be added and maintained manually by a process engineer. Thus, this task is error-prone and time-consuming. In this report, we address the problem of modeling processes with complex data dependencies, e.g., m:n relationships, and their automatic enactment from process models. First, we extend BPMN data objects with few annotations to allow data dependency handling as well as data instance differentiation. Second, we introduce a pattern-based approach to derive SQL queries from process models utilizing the above mentioned extensions. Therewith, we allow automatic enactment of data-aware BPMN process models. We implemented our approach for the Activiti process engine to show applicability. N2 - Die Ausführung von Geschäftsprozessen in Process Engines benötigt Informationen über den Kontrollfluss, die Rollenzuordnungen und die Datenabhängigkeiten. Während die ersten beiden Aspekte bereits automatisiert von Process Engines unterstützt werden, müssen die Datenabhängigkeiten durch einen Prozessingenieur manuell hinzugefügt und gewartet werden. Allerdings ist diese Aufgabe sehr fehleranfällig und zeitintensiv. In diesem Report zeigen wir wie Prozesse mit komplexen Datenabhängigkeiten, z.B. m:n Beziehungen, modelliert und automatisiert ausgeführt werden können. Dazu erweitern wir zuerst BPMN Datenobjekte mit wenigen Annotationen, um das Handling von Datenabhängikeiten sowie die Differenzierung von Datenobjektinstanzen zu ermöglichen. Danach beschreiben wir einen Pattern-basierten Ansatz, um SQL-Queries, unter Nutzung der oben erwähnten Erweiterungen, aus Prozessmodellen abzuleiten. Damit erlauben wir die automatisierte Ausführung von Daten-orientierten BPMN Prozessmodellen. Um die Anwendbarkeit unseres Ansatzen zu demonstieren, implementierten wir ihn für die Process Engine Activiti. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 74 KW - Prozessmodellierung KW - Datenmodellierung KW - Prozessausführung KW - BPMN KW - SQL KW - Process Modeling KW - Data Modeling KW - Process Enactment KW - BPMN KW - SQL Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65103 SN - 978-3-86956-245-2 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Yousfi, Alaaeddine A1 - Hewelt, Marcin A1 - Bauer, Christine A1 - Weske, Mathias T1 - Toward uBPMN-Based patterns for modeling ubiquitous business processes JF - IEEE Transactions on Industrial Informatics N2 - Ubiquitous business processes are the new generation of processes that pervade the physical space and interact with their environments using a minimum of human involvement. Although they are now widely deployed in the industry, their deployment is still ad hoc . They are implemented after an arbitrary modeling phase or no modeling phase at all. The absence of a solid modeling phase backing up the implementation generates many loopholes that are stressed in the literature. Here, we tackle the issue of modeling ubiquitous business processes. We propose patterns to represent the recent ubiquitous computing features. These patterns are the outcome of an analysis we conducted in the field of human-computer interaction to examine how the features are actually deployed. The patterns' understandability, ease-of-use, usefulness, and completeness are examined via a user experiment. The results indicate that these four indexes are on the positive track. Hence, the patterns may be the backbone of ubiquitous business process modeling in industrial applications. KW - Ubiquitous business process KW - ubiquitous business process model and notation (uBPMN) KW - ubiquitous business process modeling KW - ubiquitous computing (ubicomp) Y1 - 2017 U6 - https://doi.org/10.1109/TII.2017.2777847 SN - 1551-3203 SN - 1941-0050 VL - 14 IS - 8 SP - 3358 EP - 3367 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Nikaj, Adriatik A1 - Weske, Mathias A1 - Mendling, Jan T1 - Semi-automatic derivation of RESTful choreographies from business process choreographies JF - Software and systems modeling N2 - Enterprises reach out for collaborations with other organizations in order to offer complex products and services to the market. Such collaboration and coordination between different organizations, for a good share, is facilitated by information technology. The BPMN process choreography is a modeling language for specifying the exchange of information and services between different organizations at the business level. Recently, there is a surging use of the REST architectural style for the provisioning of services on the web, but few systematic engineering approach to design their collaboration. In this paper, we address this gap in a comprehensive way by defining a semi-automatic method for the derivation of RESTful choreographies from process choreographies. The method is based on natural language analysis techniques to derive interactions from the textual information in process choreographies. The proposed method is evaluated in terms of effectiveness resulting in the intervention of a web engineer in only about 10% of all generated RESTful interactions. KW - Business process choreographies KW - RESTful choreographies KW - Natural language analysis Y1 - 2019 U6 - https://doi.org/10.1007/s10270-017-0653-2 SN - 1619-1366 SN - 1619-1374 VL - 18 IS - 2 SP - 1195 EP - 1208 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Pufahl, Luise A1 - Weske, Mathias T1 - Batch activity: enhancing business process modeling and enactment with batch processing JF - Computing N2 - Organizations strive for efficiency in their business processes by process improvement and automation. Business process management (BPM) supports these efforts by capturing business processes in process models serving as blueprint for a number of process instances. In BPM, process instances are typically considered running independently of each other. However, batch processing-the collectively execution of several instances at specific process activities-is a common phenomenon in operational processes to reduce cost or time. Currently, batch processing is organized manually or hard-coded in software. For allowing stakeholders to explicitly represent their batch configurations in process models and their automatic execution, this paper provides a concept for batch activities and describes the corresponding execution semantics. The batch activity concept is evaluated in a two-step approach: a prototypical implementation in an existing BPM System proves its feasibility. Additionally, batch activities are applied to different use cases in a simulated environment. Its application implies cost-savings when a suitable batch configuration is selected. The batch activity concept contributes to practice by allowing the specification of batch work in process models and their automatic execution, and to research by extending the existing process modeling concepts. KW - Batch activity KW - Batch processing KW - Business process models KW - Process Enactment KW - Colored Petri Net Y1 - 2019 U6 - https://doi.org/10.1007/s00607-019-00717-4 SN - 0010-485X SN - 1436-5057 VL - 101 IS - 12 SP - 1909 EP - 1933 PB - Springer CY - Wien ER - TY - JOUR A1 - Bazhenova, Ekaterina A1 - Zerbato, Francesca A1 - Oliboni, Barbara A1 - Weske, Mathias T1 - From BPMN process models to DMN decision models JF - Information systems N2 - The interplay between process and decision models plays a crucial role in business process management, as decisions may be based on running processes and affect process outcomes. Often process models include decisions that are encoded through process control flow structures and data flow elements, thus reducing process model maintainability. The Decision Model and Notation (DMN) was proposed to achieve separation of concerns and to possibly complement the Business Process Model and Notation (BPMN) for designing decisions related to process models. Nevertheless, deriving decision models from process models remains challenging, especially when the same data underlie both process and decision models. In this paper, we explore how and to which extent the data modeled in BPMN processes and used for decision-making may be represented in the corresponding DMN decision models. To this end, we identify a set of patterns that capture possible representations of data in BPMN processes and that can be used to guide the derivation of decision models related to existing process models. Throughout the paper we refer to real-world healthcare processes to show the applicability of the proposed approach. (C) 2019 Elsevier Ltd. All rights reserved. KW - Business process models KW - Decision models KW - BPMN KW - DMN KW - Pattern Y1 - 2019 U6 - https://doi.org/10.1016/j.is.2019.02.001 SN - 0306-4379 SN - 1873-6076 VL - 83 SP - 69 EP - 88 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Bazhenova, Ekaterina A1 - Zerbato, Francesca A1 - Weske, Mathias T1 - Data-Centric Extraction of DMN Decision Models from BPMN Process Models T2 - Business Process Management Workshops N2 - Operational decisions in business processes can be modeled by using the Decision Model and Notation (DMN). The complementary use of DMN for decision modeling and of the Business Process Model and Notation (BPMN) for process design realizes the separation of concerns principle. For supporting separation of concerns during the design phase, it is crucial to understand which aspects of decision-making enclosed in a process model should be captured by a dedicated decision model. Whereas existing work focuses on the extraction of decision models from process control flow, the connection of process-related data and decision models is still unexplored. In this paper, we investigate how process-related data used for making decisions can be represented in process models and we distinguish a set of BPMN patterns capturing such information. Then, we provide a formal mapping of the identified BPMN patterns to corresponding DMN models and apply our approach to a real-world healthcare process. KW - Business process models KW - Process-related data KW - Decision models Y1 - 2018 SN - 978-3-319-74030-0 SN - 978-3-319-74029-4 U6 - https://doi.org/10.1007/978-3-319-74030-0_43 SN - 1865-1348 VL - 308 SP - 542 EP - 555 PB - Springer CY - Berlin ER - TY - GEN A1 - Pufahl, Luise A1 - Wong, Tsun Yin A1 - Weske, Mathias T1 - Design of an extensible BPMN process simulator T2 - Business Process Management Workshops (BPM 2017) N2 - Business process simulation is an important means for quantitative analysis of a business process and to compare different process alternatives. With the Business Process Model and Notation (BPMN) being the state-of-the-art language for the graphical representation of business processes, many existing process simulators support already the simulation of BPMN diagrams. However, they do not provide well-defined interfaces to integrate new concepts in the simulation environment. In this work, we present the design and architecture of a proof-of-concept implementation of an open and extensible BPMN process simulator. It also supports the simulation of multiple BPMN processes at a time and relies on the building blocks of the well-founded discrete event simulation. The extensibility is assured by a plug-in concept. Its feasibility is demonstrated by extensions supporting new BPMN concepts, such as the simulation of business rule activities referencing decision models and batch activities. KW - Business process simulation KW - Extensibility KW - BPMN Y1 - 2018 SN - 978-3-319-74030-0 SN - 978-3-319-74029-4 U6 - https://doi.org/10.1007/978-3-319-74030-0_62 SN - 1865-1348 VL - 308 SP - 782 EP - 795 PB - Springer CY - Berlin ER - TY - GEN A1 - Haarmann, Stephan A1 - Batoulis, Kimon A1 - Nikaj, Adriatik A1 - Weske, Mathias T1 - DMN Decision Execution on the Ethereum Blockchain T2 - Advanced Information Systems Engineering, CAISE 2018 N2 - Recently blockchain technology has been introduced to execute interacting business processes in a secure and transparent way. While the foundations for process enactment on blockchain have been researched, the execution of decisions on blockchain has not been addressed yet. In this paper we argue that decisions are an essential aspect of interacting business processes, and, therefore, also need to be executed on blockchain. The immutable representation of decision logic can be used by the interacting processes, so that decision taking will be more secure, more transparent, and better auditable. The approach is based on a mapping of the DMN language S-FEEL to Solidity code to be run on the Ethereum blockchain. The work is evaluated by a proof-of-concept prototype and an empirical cost evaluation. KW - Blockchain KW - Interacting processes KW - DMN Y1 - 2018 SN - 978-3-319-91563-0 SN - 978-3-319-91562-3 U6 - https://doi.org/10.1007/978-3-319-91563-0_20 SN - 0302-9743 SN - 1611-3349 VL - 10816 SP - 327 EP - 341 PB - Springer CY - Cham ER - TY - JOUR A1 - Yousfi, Alaaeddine A1 - Batoulis, Kimon A1 - Weske, Mathias T1 - Achieving Business Process Improvement via Ubiquitous Decision-Aware Business Processes JF - ACM Transactions on Internet Technology N2 - Business process improvement is an endless challenge for many organizations. As long as there is a process, it must he improved. Nowadays, improvement initiatives are driven by professionals. This is no longer practical because people cannot perceive the enormous data of current business environments. Here, we introduce ubiquitous decision-aware business processes. They pervade the physical space, analyze the ever-changing environments, and make decisions accordingly. We explain how they can be built and used for improvement. Our approach can be a valuable improvement option to alleviate the workload of participants by helping focus on the crucial rather than the menial tasks. KW - Business process improvement KW - ubiquitous decision-aware business process KW - ubiquitous decisions KW - context KW - uBPMN KW - DMN Y1 - 2019 U6 - https://doi.org/10.1145/3298986 SN - 1533-5399 SN - 1557-6051 VL - 19 IS - 1 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Ladleif, Jan A1 - Weske, Mathias T1 - Which event happened first? BT - Deferred choice on blockchain using oracles JF - Frontiers in blockchain N2 - First come, first served: Critical choices between alternative actions are often made based on events external to an organization, and reacting promptly to their occurrence can be a major advantage over the competition. In Business Process Management (BPM), such deferred choices can be expressed in process models, and they are an important aspect of process engines. Blockchain-based process execution approaches are no exception to this, but are severely limited by the inherent properties of the platform: The isolated environment prevents direct access to external entities and data, and the non-continual runtime based entirely on atomic transactions impedes the monitoring and detection of events. In this paper we provide an in-depth examination of the semantics of deferred choice, and transfer them to environments such as the blockchain. We introduce and compare several oracle architectures able to satisfy certain requirements, and show that they can be implemented using state-of-the-art blockchain technology. KW - business processes KW - business process management KW - deferred choice KW - workflow patterns KW - blockchain KW - smart contracts KW - oracles KW - formal semantics Y1 - 2021 U6 - https://doi.org/10.3389/fbloc.2021.758169 SN - 2624-7852 VL - 4 SP - 1 EP - 16 PB - Frontiers in Blockchain CY - Lausanne, Schweiz ER -