TY - JOUR A1 - Lützow, Karola A1 - Weigel, Thomas A1 - Lendlein, Andreas T1 - Solvent-based fabrication method for magnetic, shape-memory nanocomposite foams JF - MRS advances N2 - This paper presents shape-memory foams that can be temporarily fixed in their compressed state and be expanded on demand. Highly porous, nanocomposite foams were prepared from a solution of polyetherurethane with suspended nanoparticles (mean aggregate size 90 nm) which have an iron(III) oxide core with a silica shell. The polymer solution with suspended nanoparticles was cooled down to -20 degrees C in a two-stage process, which was followed by freeze-drying. The average pore size increases with decreasing concentration of nanoparticles from 158 mu m to 230 mu m while the foam porosity remained constant. After fixation of a temporary form of the nanocomposite foams, shape recovery can be triggered either by heat or by exposure to an alternating magnetic field. Compressed foams showed a recovery rate of up to 76 +/- 4% in a thermochamber at 80 degrees C, and a slightly lower recovery rate of up to 65 +/- 4% in a magnetic field. KW - composite KW - foam KW - polymer KW - magnetic KW - shape memory Y1 - 2020 U6 - https://doi.org/10.1557/adv.2019.422 SN - 2059-8521 VL - 5 IS - 14-15 SP - 785 EP - 795 PB - Cambridge Univ. Press CY - Cambridge ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Weigel, Thomas A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - The influence of thermal treatment on the morphology in differently prepared films of a oligodepsipeptide based multiblock copolymer JF - Polymers for advanced technologies N2 - Degradable multiblock copolymers prepared from equal weight amounts of poly(epsilon-caprolactone)-diol (PCL-diol) and poly[oligo(3S-iso-butylmorpholine-2,5-dione)]-diol (PIBMD-diol), named PCL-PIBMD, provide a phase-segregated morphology. It exhibits a low melting temperature from PCL domains (T-m,T-PCL) of 382 degrees C and a high T-m,T-PIBMD of 170 +/- 2 degrees C with a glass transition temperature (T-g,T-PIBMD) at 42 +/- 2 degrees C from PIBMD domains. In this study, we explored the influence of applying different thermal treatments on the resulting morphologies of solution-cast and spin-coated PCL-PIBMD thin films, which showed different initial surface morphologies. Differential scanning calorimetry results and atomic force microscopy images after different thermal treatments indicated that PCL and PIBMD domains showed similar crystallization behaviors in 270 +/- 30 mu m thick solution-cast films as well as in 30 +/- 2 and 8 +/- 1nm thick spin-coated PCL-PIBMD films. Existing PIBMD crystalline domains highly restricted the generation of PCL crystalline domains during cooling when the sample was annealed at 180 degrees C. By annealing the sample above 120 degrees C, the PIBMD domains crystallized sufficiently and covered the free surface, which restricted the crystallization of PCL domains during cooling. The PCL domains can crystallize by hindering the crystallization of PIBMD domains via the fast vitrification of PIBMD domains when the sample was cooled/quenched in liquid nitrogen after annealing at 180 degrees C. These findings contribute to a better fundamental understanding of the crystallization mechanism of multi-block copolymers containing two crystallizable domains whereby the T-g of the higher melting domain type is in the same temperature range as the T-m of the lower melting domain type. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - multiblock copolymer KW - oligodepsipeptides KW - phase morphology KW - thermal treatments KW - crystallization behavior Y1 - 2017 U6 - https://doi.org/10.1002/pat.3953 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1339 EP - 1345 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Sauter, Tilman A1 - Lützow, Karola A1 - Schossig, Michael A1 - Kosmella, Hans A1 - Weigel, Thomas A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Shape-memory properties of polyetherurethane foams prepared by thermally induced phase separation JF - Advanced engineering materials N2 - In this study, we report the preparation of two structurally different shape-memory polymer foams by thermally induced phase separation (TIPS) from amorphous polyetherurethanes. Foams with either a homogeneous, monomodal, or with a hierarchically structured, bimodal, pore size distribution are obtained by adoption of the cooling protocol. The shape-memory properties have been investigated for both foam structures by cyclic, thermomechanical experiments, while the morphological changes on the micro scale (pore level) have been compared to the macro scale by an in situ micro compression device experiment. The results show that the hierarchically structured foam achieves higher shape-recovery rates and a higher total recovery as compared to the homogeneous foam, which is due to an increased energy storage capability by micro scale bending of the hierarchically structured foam compared to pure compression of the homogeneous foam. Y1 - 2012 U6 - https://doi.org/10.1002/adem.201200127 SN - 1438-1656 VL - 14 IS - 9 SP - 818 EP - 824 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wischke, Christian A1 - Baehr, Elen A1 - Racheva, Miroslava A1 - Heuchel, Matthias A1 - Weigel, Thomas A1 - Lendlein, Andreas T1 - Surface immobilization strategies for tyrosinase as biocatalyst applicable to polymer network synthesis JF - MRS Advances N2 - Enzymes have recently attracted increasing attention in material research based on their capacity to catalyze the conversion of polymer-bound moieties for synthesizing polymer networks, particularly bulk hydrogels. hi this study. the surface immobilization of a relevant enzyme. mushroom tyrosinase, should be explored using glass as model surface. In a first step. the glass support was functionalized with silanes to introduce either amine or carboxyl groups, as confirmed e.g. by X-ray photoelectron spectroscopy. By applying glutaraldehyde and EDC/NHS chemistry, respectively, surfaces have been activated for subsequent successful coupling of tyrosinase. Via protein hydrolysis and amino acid characterization by HPLC, the quantity of bound tyrosinase was shown to correspond to a full surface coverage. Based on the visualized enzymatic conversion of a test substrate at the glass support. the functionalized surfaces may be explored for surface-associated material synthesis in the future. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.630 SN - 2059-8521 VL - 3 IS - 63 SP - 3875 EP - 3881 PB - Cambridge Univ. Press CY - New York ER - TY - CHAP A1 - Sauter, Tilman A1 - Lützow, Karola A1 - Schossig, Michael A1 - Kosmella, Hans A1 - Weigel, Thomas A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Pore morphology as structural parameter to tailor the shape-memory effect of polyuetherurethane foams T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2013 SN - 0065-7727 VL - 245 PB - American Chemical Society CY - Washington ER -