TY - THES A1 - Warsinke, Axel T1 - Von Enzymen zu biomimetischen Polymeren : neue Perspektiven für die Bioanalytik Y1 - 2006 CY - Potsdam ER - TY - JOUR A1 - Nagel, Birgit A1 - Warsinke, Axel T1 - Towards separation-free electrochemical affinity sensors by using antibodies, aptamers and molecularly imprinted polymers : a review Y1 - 2006 U6 - https://doi.org/10.1080/00032710600853903 ER - TY - JOUR A1 - Huang, T. A1 - Warsinke, Axel A1 - Kuwana, T. A1 - Scheller, Frieder W. T1 - The determination of L-phenylalanine based on a novel NADH-detecting biosensor Y1 - 1998 ER - TY - JOUR A1 - Grießner, Matthias A1 - Hartig, Dave A1 - Christmann, Alexander A1 - Ehrentreich-Förster, Eva A1 - Warsinke, Axel A1 - Bier, Frank Fabian T1 - Surface regeneration of microfluidic microarray printheads through plasma techniques N2 - This work describes a method for surface regeneration of microfluidic microarray printheads through plasma techniques. Modification procedures were chosen in a way to obtain high reproducibility with a minimum of time consumption. The idea behind this is a complete regeneration of a microarray printhead before or after usage to achieve best printing results over a typical print job. A sequence of low-pressure oxygen-plasma and plasma polymerization with hexamethyldisiloxane (HMDSO) was used to regenerate printheads. Proof of the concept is given through quality control performed with a spotter implemented CCD camera, contact angle measurements and a typical hybridization experiment. Stable printing results were obtained over 3000 activations showing that the presented method is suitable for treatment of microarray printheads. Y1 - 2010 UR - http://iopscience.iop.org/0960-1317/ U6 - https://doi.org/10.1088/0960-1317/20/3/037002 SN - 0960-1317 ER - TY - THES A1 - Benkert, Alexander A1 - Scheller, Frieder W. A1 - Schössler, W. A1 - Micheel, Burkhard A1 - Warsinke, Axel T1 - Size exclusion redox-labeled immunoassay (SERI) : a new format for homogeneous amperometric creatinine determination Y1 - 2000 ER - TY - JOUR A1 - Halámek, Jan A1 - Wollenberger, Ursula A1 - Stöcklein, Walter F. M. A1 - Warsinke, Axel A1 - Scheller, Frieder W. T1 - Signal amplification in immunoassays using labeling via boronic acid binding to the sugar moiety of immunoglobulin G : proof of concept for glycated hemoglobin N2 - A novel electrochemical immunoassay based on the multiple affinity labeling of the indicator antibody with an electro-active tag is presented. The concept is illustrated for the determination of the glycated hemoglobin HbA1c in hemoglobin samples. Hemoglobin is adsorbed to the surfactant-modified surface of a piezoelectric quartz crystal. Whereas the quartz crystal nanobalance is used to validate the total Hb binding, the HbA1c on the sensor surface is recognized by an antibody and quantified electrochemically after the sugar moieties of the antibody have been labeled in-situ with ferroceneboronic acid. The sensitivity of this sensor is about threefold higher than the sensitivity of a hemoglobin sensor, where the ferroceneboronic acid is bound directly to HbA1c. Y1 - 2007 UR - http://www.informaworld.com/openurl?genre=journal&issn=0003-2719 U6 - https://doi.org/10.1080/00032710701327096 SN - 0003-2719 ER - TY - JOUR A1 - Stöcklein, Walter F. M. A1 - Rohde, M. A1 - Scharte, Gudrun A1 - Behrsing, Olaf A1 - Warsinke, Axel A1 - Micheel, Burkhard A1 - Scheller, Frieder W. T1 - Sensitive detection of triazine and phenylurea pesticides in pure organic solvent by enzyme linked immunsorbent assay (ELISA): stabilities, solubilities and sensitives Y1 - 2000 ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula A1 - Warsinke, Axel A1 - Lisdat, Fred T1 - Research and development in biosensors Y1 - 2001 ER - TY - JOUR A1 - Rohde, M. A1 - Schenk, Jörg A. A1 - Heymann, Stephan A1 - Behrsing, Olaf A1 - Scharte, Gudrun A1 - Kempter, Gerhard A1 - Woller, Jochen A1 - Höhne, Wolfgang A1 - Warsinke, Axel A1 - Micheel, Burkhard T1 - Production and characterization of monoclonal antibodeis against urea derivatives Y1 - 1998 ER - TY - JOUR A1 - Warsinke, Axel T1 - Point-of-care testing of proteins N2 - Point-of-care testing (POCT) is a fast developing area in clinical diagnostics that is considered to be one of the main driving forces for the future in vitro diagnostic market. POCT means decentralized testing at the site of patient care. The most important POCT devices are handheld blood glucose sensors. In some of these sensors, after the application of less than 1 A mu l whole blood, the results are displayed in less than 10 s. For protein determination, the most commonly used devices are based on lateral flow technology. Although these devices are convenient to use, the results are often only qualitative or semiquantitative. The review will illuminate some of the current methods employed in POCT for proteins and will discuss the outlook for techniques (e.g., electrochemical immunosensors) that could have a great impact on future POCT of proteins. Y1 - 2009 UR - http://www.springerlink.com/content/100417 U6 - https://doi.org/10.1007/s00216-008-2572-0 SN - 1618-2642 ER -