TY - GEN A1 - de Vera, Jean-Pierre Paul A1 - Alawi, Mashal A1 - Backhaus, Theresa A1 - Baque, Mickael A1 - Billi, Daniela A1 - Boettger, Ute A1 - Berger, Thomas A1 - Bohmeier, Maria A1 - Cockell, Charles A1 - Demets, Rene A1 - de la Torre Noetzel, Rosa A1 - Edwards, Howell A1 - Elsaesser, Andreas A1 - Fagliarone, Claudia A1 - Fiedler, Annelie A1 - Foing, Bernard A1 - Foucher, Frederic A1 - Fritz, Jörg A1 - Hanke, Franziska A1 - Herzog, Thomas A1 - Horneck, Gerda A1 - Hübers, Heinz-Wilhelm A1 - Huwe, Björn A1 - Joshi, Jasmin Radha A1 - Kozyrovska, Natalia A1 - Kruchten, Martha A1 - Lasch, Peter A1 - Lee, Natuschka A1 - Leuko, Stefan A1 - Leya, Thomas A1 - Lorek, Andreas A1 - Martinez-Frias, Jesus A1 - Meessen, Joachim A1 - Moritz, Sophie A1 - Moeller, Ralf A1 - Olsson-Francis, Karen A1 - Onofri, Silvano A1 - Ott, Sieglinde A1 - Pacelli, Claudia A1 - Podolich, Olga A1 - Rabbow, Elke A1 - Reitz, Günther A1 - Rettberg, Petra A1 - Reva, Oleg A1 - Rothschild, Lynn A1 - Garcia Sancho, Leo A1 - Schulze-Makuch, Dirk A1 - Selbmann, Laura A1 - Serrano, Paloma A1 - Szewzyk, Ulrich A1 - Verseux, Cyprien A1 - Wadsworth, Jennifer A1 - Wagner, Dirk A1 - Westall, Frances A1 - Wolter, David A1 - Zucconi, Laura T1 - Limits of life and the habitability of Mars BT - the ESA space experiment BIOMEX on the ISS T2 - Astrobiology N2 - BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit. KW - EXPOSE-R2 KW - BIOMEX KW - Habitability KW - Limits of life KW - Extremophiles KW - Mars Y1 - 2019 U6 - https://doi.org/10.1089/ast.2018.1897 SN - 1531-1074 SN - 1557-8070 VL - 19 IS - 2 SP - 145 EP - 157 PB - Liebert CY - New Rochelle ER - TY - JOUR A1 - Meier, Lars A. A1 - Krauze, Patryk A1 - Prater, Isabel A1 - Horn, Fabian A1 - Schaefer, Carlos Ernesto Reynaud A1 - Scholten, Thomas A1 - Wagner, Dirk A1 - Müller, Carsten Werner A1 - Kühn, Peter T1 - Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region JF - Biogeosciences N2 - James Ross Island (JRI) offers the exceptional opportunity to study microbial-driven pedogenesis without the influence of vascular plants or faunal activities (e.g., penguin rookeries). In this study, two soil profiles from JRI (one at Santa Martha Cove - SMC, and another at Brandy Bay BB) were investigated, in order to gain information about the initial state of soil formation and its interplay with prokaryotic activity, by combining pedological, geochemical and microbiological methods. The soil profiles are similar with respect to topographic position and parent material but are spatially separated by an orographic barrier and therefore represent windward and leeward locations towards the mainly southwesterly winds. These different positions result in differences in electric conductivity of the soils caused by additional input of bases by sea spray at the windward site and opposing trends in the depth functions of soil pH and electric conductivity. Both soils are classified as Cryosols, dominated by bacterial taxa such as Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes and Chloroflexi. A shift in the dominant taxa was observed below 20 cm in both soils as well as an increased abundance of multiple operational taxonomic units (OTUs) related to potential chemolithoautotrophic Acidiferrobacteraceae. This shift is coupled by a change in microstructure. While single/pellicular grain microstructure (SMC) and platy microstructure (BB) are dominant above 20 cm, lenticular microstructure is dominant below 20 cm in both soils. The change in microstructure is caused by frequent freeze-thaw cycles and a relative high water content, and it goes along with a development of the pore spacing and is accompanied by a change in nutrient content. Multivariate statistics revealed the influence of soil parameters such as chloride, sulfate, calcium and organic carbon contents, grain size distribution and pedogenic oxide ratios on the overall microbial community structure and explained 49.9% of its variation. The correlation of the pedogenic oxide ratios with the compositional distribution of microorganisms as well as the relative abundance certain microorganisms such as potentially chemolithotrophic Acidiferrobacteraceae-related OTUs could hint at an interplay between soil-forming processes and microorganisms. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-2481-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 12 SP - 2481 EP - 2499 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Mitzscherling, Julia A1 - Horn, Fabian A1 - Winterfeld, Maria A1 - Mahler, Linda A1 - Kallmeyer, Jens A1 - Overduin, Pier Paul A1 - Schirrmeister, Lutz A1 - Winkel, Matthias A1 - Grigoriev, Mikhail N. A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Microbial community composition and abundance after millennia of submarine permafrost warming JF - Biogeosciences N2 - Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 degrees C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore-offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 degrees C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes delta O-18 and delta D, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 degrees C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-3941-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 19 SP - 3941 EP - 3958 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Gefen-Treves, Shany A1 - Kedem, Isaac A1 - Weiss, Gad A1 - Wagner, Dirk A1 - Tchernov, Dan A1 - Kaplan, Aaron T1 - Acclimation of a rocky shore algal reef builder Neogoniolithon sp. to changing illuminations JF - Limnology and oceanography e-lectures / Association for the Sciences of Limnology and Oceanography N2 - Vermetid reefs and rocky shores are hot spots of biodiversity, often referred to as the subtropical equivalent of coral reefs. The development of the ecosystem depends on the activity of several reef builders, including red crustose coralline algae (CCA) such as Neogoniolithon brassica-florida. Despite its importance, little is known about Neogoniolithon sp. acclimation to rapid changes in light intensity and corresponding photosynthetic activity. To overcome the large spatial variability in the light field (due to location and the porous nature of the rocks) we grew Neogoniolithon sp. on glass slides and characterized its photosynthetic performance in response to various light intensities by following O-2 exchange and fluorescence parameters. This was also performed on rock-inhabiting thalli collected from the east Mediterranean basin. Generally, maximal photosynthetic rate was reached when Neogoniolithon sp. thalli grown under low illumination (such as in protected niches where the light intensity can be as low as 1% of surface illumination) were examined. When exposed to light intensities higher than those experienced during growth, Neogoniolithon sp. activates adaptive/protective mechanisms such as state transition and nonphotochemical fluorescence quenching and increases the dark respiration thereafter. We find that the Fv/Fm parameter (variable/maximal fluorescence) is not suitable to assess photosynthetic performance in Neogoniolithon sp. and propose using instead an alternative parameter recently developed. Our findings help to clarify why Neogoniolithon sp. is usually observed in shaded niches along the reef surfaces. Y1 - 2019 U6 - https://doi.org/10.1002/lno.11245 SN - 0024-3590 SN - 1939-5590 VL - 65 IS - 1 SP - 27 EP - 36 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tanski, Georg A1 - Wagner, Dirk A1 - Knoblauch, Christian A1 - Fritz, Michael A1 - Sachs, Torsten A1 - Lantuit, Hugues T1 - Rapid CO2 Release From Eroding Permafrost in Seawater JF - Geophysical research letters Y1 - 2019 U6 - https://doi.org/10.1029/2019GL084303 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 20 SP - 11244 EP - 11252 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Serrano, Paloma A1 - Alawi, Mashal A1 - de Vera, Jean-Pierre Paul A1 - Wagner, Dirk T1 - Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate JF - Astrobiology N2 - Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80 degrees C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions. KW - Methanogenic archaea KW - Simulated Mars-like conditions KW - Subfreezing temperatures KW - Martian regolith analogs KW - Perchlorate KW - Permafrost Y1 - 2019 U6 - https://doi.org/10.1089/ast.2018.1877 SN - 1531-1074 SN - 1557-8070 VL - 19 IS - 2 SP - 197 EP - 208 PB - Liebert CY - New Rochelle ER -