TY - JOUR A1 - Sachse, Rita A1 - Wüstenhagen, Doreen Anja A1 - Samalikova, Maria A1 - Gerrits, Michael A1 - Bier, Frank Fabian A1 - Kubick, Stefan T1 - Synthesis of membrane proteins in eukaryotic cell-free systems JF - Engineering in life sciences : Industry, Environment, Plant, Food N2 - Cell-free protein synthesis (CFPS) is a valuable method for the fast expression of difficult-to-express proteins as well as posttranslationally modified proteins. Since cell-free systems circumvent possible cytotoxic effects caused by protein overexpression in living cells, they significantly enlarge the scale and variety of proteins that can be characterized. We demonstrate the high potential of eukaryotic CFPS to express various types of membrane proteins covering a broad range of structurally and functionally diverse proteins. Our eukaryotic cell-free translation systems are capable to provide high molecular weight membrane proteins, fluorescent-labeled membrane proteins, as well as posttranslationally modified proteins for further downstream analysis. KW - Cell-free protein expression KW - In vitro protein synthesis KW - Labeled membrane proteins KW - Synthetic glycoprotein Y1 - 2013 U6 - https://doi.org/10.1002/elsc.201100235 SN - 1618-0240 VL - 13 IS - 1 SP - 39 EP - 48 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zemella, Anne A1 - Thoring, Lena A1 - Hoffmeister, Christian A1 - Samalikova, Maria A1 - Ehren, Patricia A1 - Wüstenhagen, Doreen Anja A1 - Kubick, Stefan T1 - Cell-free protein synthesis as a novel tool for directed glycoengineering of active erythropoietin JF - Scientific reports N2 - As one of the most complex post-translational modification, glycosylation is widely involved in cell adhesion, cell proliferation and immune response. Nevertheless glycoproteins with an identical polypeptide backbone mostly differ in their glycosylation patterns. Due to this heterogeneity, the mapping of different glycosylation patterns to their associated function is nearly impossible. In the last years, glycoengineering tools including cell line engineering, chemoenzymatic remodeling and site-specific glycosylation have attracted increasing interest. The therapeutic hormone erythropoietin (EPO) has been investigated in particular by various groups to establish a production process resulting in a defined glycosylation pattern. However commercially available recombinant human EPO shows batch-to-batch variations in its glycoforms. Therefore we present an alternative method for the synthesis of active glycosylated EPO with an engineered O-glycosylation site by combining eukaryotic cell-free protein synthesis and site-directed incorporation of non-canonical amino acids with subsequent chemoselective modifications. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-26936-x SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER -