TY - JOUR A1 - van Afferden, Manfred A1 - Rahman, Khaja Z. A1 - Mosig, Peter A1 - De Biase, Cecilia A1 - Thullner, Martin A1 - Oswald, Sascha Eric A1 - Müller, Roland A. T1 - Remediation of groundwater contaminated with MTBE and benzene the potential of vertical-flow soil filter systems JF - Water research N2 - Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF + PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970 +/- 816 and 13,966 +/- 1998 mu g L(-1), respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m(-2) d(-1) were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m(-2)d(-1), the mean concentrations of MTBE and benzene were found to be 550 +/- 133 and 65 +/- 123 mu g L(-1) in the effluent of the RF. In the effluent of the PP system, respective mean MTBE and benzene concentrations of 49 +/- 77 and 0.5 +/- 0.2 mu g L(-1) were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 mu g L-1 for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF + PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (similar to 100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5 +/- 10 and 0.6 +/- 0.2 mu g L(-1) in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries. KW - Benzene KW - Groundwater remediation KW - Hydraulic loading rate KW - MTBE KW - Pilot-scale constructed wetland KW - Vertical-flow soil filter KW - Willow tree Y1 - 2011 U6 - https://doi.org/10.1016/j.watres.2011.07.010 SN - 0043-1354 VL - 45 IS - 16 SP - 5063 EP - 5074 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - De Biase, Cecilia A1 - Reger, Daniel A1 - Schmidt, Axel A1 - Jechalke, Sven A1 - Reiche, Nils A1 - Martinez-Lavanchy, Paula M. A1 - Rosell, Monica A1 - Van Afferden, Manfred A1 - Maier, Uli A1 - Oswald, Sascha Eric A1 - Thullner, Martin T1 - Treatment of volatile organic contaminants in a vertical flow filter - relevance of different removal processes JF - Ecological engineering : the journal of ecotechnology N2 - Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter. The filter is intermittently irrigated with contaminated groundwater containing benzene, MTBE and ammonium as the main contaminants. The system is characterized by unsaturated conditions and high contaminant removal efficiency. The aim of the present study is to evaluate the contribution of biodegradation and volatilization to the overall removal of benzene and MTBE. Tracer tests and flow rate measurements showed a highly transient flow and heterogeneous transport regime. Radon-222, naturally occurring in the treated groundwater, was used as a gas tracer and indicated a high volatilization potential. Radon-222 behavior was reproduced by numerical simulations and extrapolated for benzene and MTBE, and indicated these compounds also have a high volatilization potential. In contrast, passive sampler measurements on top of the filter detected only low benzene and MTBE concentrations. Biodegradation potential was evaluated by the analysis of catabolic genes involved in organic compound degradation and a quantitative estimation of biodegradation was derived from stable isotope fractionation analysis. Results suggest that despite the high volatilization potential, biodegradation is the predominant mass removal process in the filter system, which indicates that the volatilized fraction of the contaminants is still subject to subsequent biodegradation. In particular, the upper filter layer located between the injection tubes and the surface of the system might also contribute to biodegradation, and might play a crucial role in avoiding the emission of volatilized contaminants into the atmosphere. KW - Benzene KW - Biodegradation KW - Catabolic genes KW - MTBE KW - Numerical modeling KW - Radon KW - SAFIRA II KW - Stable isotope fractionation analysis KW - Tracers KW - VOCs KW - Volatilization Y1 - 2011 U6 - https://doi.org/10.1016/j.ecoleng.2011.03.023 SN - 0925-8574 VL - 37 IS - 9 SP - 1292 EP - 1303 PB - Elsevier CY - Amsterdam ER -