TY - JOUR A1 - Utecht, Manuel Martin A1 - Pan, Tianluo A1 - Klamroth, Tillmann A1 - Palmer, Richard E. T1 - Quantum chemical cluster models for chemi- and physisorption of chlorobenzene on Si(111)-7x7 JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Motivated by recent atomic manipulation experiments, we report quantum chemical calculations for chemi- and physisorption minima of chlorobenzene on the Si(111)-7x7 surface. A density functional theory cluster approach is applied, using the B3LYP hybrid functional alongside Grimme's empirical dispersion corrections (D3). We were able to identify chemisorption sites of binding energies of 1.6 eV and physisorption energies of 0.6 eV, both in encouraging agreement with the trend of experimental data. The cluster approach opens up the possibility of a first-principles based dynamical description of STM manipulation experiments on this system, the interpretation of which involves both the chemi- and physisorbed states. However, we found that special care has to be taken regarding the choice of clusters, basis sets, and the evaluation of the dispersion corrections. Y1 - 2014 U6 - https://doi.org/10.1021/jp504208d SN - 1089-5639 VL - 118 IS - 33 SP - 6699 EP - 6704 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bronner, Christopher A1 - Utecht, Manuel Martin A1 - Haase, Anton A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Tegeder, Petra T1 - Electronic structure changes during the surface-assisted formation of a graphene nanoribbon JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - High conductivity and a tunability of the band gap make quasi-one-dimensional graphene nanoribbons (GNRs) highly interesting materials for the use in field effect transistors. Especially bottom-up fabricated GNRs possess well-defined edges which is important for the electronic structure and accordingly the band gap. In this study we investigate the formation of a sub-nanometer wide armchair GNR generated on a Au(111) surface. The on-surface synthesis is thermally activated and involves an intermediate non-aromatic polymer in which the molecular precursor forms polyanthrylene chains. Employing angle-resolved two-photon photoemission in combination with density functional theory calculations we find that the polymer exhibits two dispersing states which we attribute to the valence and the conduction band, respectively. While the band gap of the non-aromatic polymer obtained in this way is relatively large, namely 5.25 +/- 0.06 eV, the gap of the corresponding aromatic GNR is strongly reduced which we attribute to the different degree of electron delocalization in the two systems. Y1 - 2014 U6 - https://doi.org/10.1063/1.4858855 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Knie, Christopher A1 - Utecht, Manuel Martin A1 - Zhao, Fangli A1 - Kulla, Hannes A1 - Kovalenko, Sergey A1 - Brouwer, Albert M. A1 - Saalfrank, Peter A1 - Hecht, Stefan A1 - Bleger, David T1 - ortho-Fluoroazobenzenes: visible light switches with very long-lived Z isomers JF - Chemistry - a European journal N2 - Improving the photochemical properties of molecular photoswitches is crucial for the development of light-responsive systems in materials and life sciences. ortho-Fluoroazobenzenes are a new class of rationally designed photochromic azo compounds with optimized properties, such as the ability to isomerize with visible light only, high photoconversions, and unprecedented robust bistable character. Introducing sigma-electron-withdrawing F atoms ortho to the N=N unit leads to both an effective separation of the n -> pi* bands of the E and Z isomers, thus offering the possibility of using these two transitions for selectively inducing E/Z iso-merizations, and greatly enhanced thermal stability of the Z isomers. Additional para-electron-withdrawing groups (EWGs) work in concert with ortho-F atoms, giving rise to enhanced separation of the n -> pi* transitions. A comprehensive study of the effect of substitution on the key photochemical properties of ortho-fluoroazobenzenes is reported herein. In particular, the position, number, and nature of the EWGs have been varied, and the visible light photoconversions, quantum yields of isomerization, and thermal stabilities have been measured and rationalized by DFT calculations. KW - azobenzenes KW - photochromism KW - photoswitches KW - substituent effects KW - visible light Y1 - 2014 U6 - https://doi.org/10.1002/chem.201404649 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 50 SP - 16492 EP - 16501 PB - Wiley-VCH CY - Weinheim ER -