TY - JOUR A1 - Utecht, Manuel Martin A1 - Gaebel, Tina A1 - Klamroth, Tillmann T1 - Desorption induced by low energy charge carriers on Si(111)-7 x 7 BT - first principles molecular dynamics for benzene derivates JF - Journal of computational chemistry : organic, inorganic, physical, biological N2 - We use clusters for the modeling of local ion resonances caused by low energy charge carriers in STM-induced desorption of benzene derivates from Si(111)-7 x 7. We perform Born-Oppenheimer molecular dynamics for the charged systems assuming vertical transitions to the charged states at zero temperature, to rationalize the low temperature activation energies, which are found in experiment for chlorobenzene. Our calculations suggest very similar low temperature activation energies for toluene and benzene. For the cationic resonance transitions to physisorption are found even at 0 K, while the anion remains chemisorbed during the propagations. Further, we also extend our previous static quantum chemical investigations to toluene and benzene. In addition, an in depth analysis of the ionization potentials and electron affinities, which are used to estimate resonance energies, is given. KW - Born-Oppenheimer MD KW - STM-induced reactions KW - cluster models KW - Si(111)-7x7 Y1 - 2018 U6 - https://doi.org/10.1002/jcc.25607 SN - 0192-8651 SN - 1096-987X VL - 39 IS - 30 SP - 2517 EP - 2525 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Palmer, Richard E. A1 - Klamroth, Tillmann T1 - Quantum chemical approach to atomic manipulation of chlorobenzene on the Si(111)-7 x 7 surface BT - Resonance localization, vibrational activation, and surface dynamics JF - Physical review materials N2 - We present a cluster model to describe the localization of hot charge carriers on the Si(111)-7 x 7 surface, which leads to (nonlocal) desorption of chlorobenzene molecules in scanning tunneling microscope (STM) manipulation experiments. The localized charge carriers are modeled by a small cluster. By means of quantum chemical calculations, this cluster model explains many experimental findings from STM manipulation. We show that the negative charge is mainly localized in the surface, while the positive one also resides on the molecule. Both resonances boost desorption: In the negative resonance the adatom is elevated; in the positive one the chemisorption bond between the silicon surface adatom and chlorobenzene is broken. We find normal modes promoting desorption matching experimental low-temperature activation energies for electron-and hole-induced desorption. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevMaterials.1.026001 SN - 2475-9953 VL - 1 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann T1 - Local resonances in STM manipulation of chlorobenzene on Si(111)-7x7 BT - performance of different cluster models and density functionals JF - Molecular physics N2 - Hot localised charge carriers on the Si(111)-7x7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry. [GRAPHICS] . KW - DFT KW - cluster model KW - charge localisation KW - STM Y1 - 2018 U6 - https://doi.org/10.1080/00268976.2018.1442939 SN - 0026-8976 SN - 1362-3028 VL - 116 IS - 13 SP - 1687 EP - 1696 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Pan, Tianluo A1 - Klamroth, Tillmann A1 - Palmer, Richard E. T1 - Quantum chemical cluster models for chemi- and physisorption of chlorobenzene on Si(111)-7x7 JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Motivated by recent atomic manipulation experiments, we report quantum chemical calculations for chemi- and physisorption minima of chlorobenzene on the Si(111)-7x7 surface. A density functional theory cluster approach is applied, using the B3LYP hybrid functional alongside Grimme's empirical dispersion corrections (D3). We were able to identify chemisorption sites of binding energies of 1.6 eV and physisorption energies of 0.6 eV, both in encouraging agreement with the trend of experimental data. The cluster approach opens up the possibility of a first-principles based dynamical description of STM manipulation experiments on this system, the interpretation of which involves both the chemi- and physisorbed states. However, we found that special care has to be taken regarding the choice of clusters, basis sets, and the evaluation of the dispersion corrections. Y1 - 2014 U6 - https://doi.org/10.1021/jp504208d SN - 1089-5639 VL - 118 IS - 33 SP - 6699 EP - 6704 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann T1 - Local resonances in STM manipulation of chlorobenzene on Si(111)-7×7 BT - performance of different cluster models and density functionals T2 - Molecular Physics N2 - Hot localised charge carriers on the Si(111)-7×7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 463 KW - DFT KW - cluster model KW - charge localisation KW - STM Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412970 ER - TY - JOUR A1 - Maass, Friedrich A1 - Utecht, Manuel Martin A1 - Stremlau, Stephan A1 - Gille, Marie A1 - Schwarz, Jutta A1 - Hecht, Stefan A1 - Klamroth, Tillmann A1 - Tegeder, Petra T1 - Electronic structure changes during the on-surface synthesis of nitrogen-doped chevron-shaped graphene nanoribbons JF - Physical review : B, Condensed matter and materials physics N2 - Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized pi-electron system. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.045434 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gaebel, Tina A1 - Bein, Daniel A1 - Mathauer, Daniel A1 - Utecht, Manuel A1 - Palmer, Richard E. A1 - Klamroth, Tillmann T1 - Nonlocal STM manipulation of chlorobenzene on Si(111)-7 x 7 BT - Potentials, kinetics, and first-principles molecular dynamics calculations for open systems JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We use quantum chemical cluster models together with constrained density STM Ph CI functional theory (DFT) and ab initio molecular dynamics (AIMD) for open system to simulate tip and rationalize nonlocal scanning tunneling microscope (STM) manipulation experiments for Philh ci chlorobenzene (PhCl) on a Si(111)-7 X 7 surface. We consider three different processes, namely, the electron-induced dissociation of the carbon-chlorine bond for physisorbed PhCl molecules at low temperatures and the electron- or hole-induced desorption of chemisorbed PhCl at 300 K. All processes can be induced nonlocally, i.e., up to several nanometers (nm) away from the injection site, in STM experiments. We rationalize and explain the experimental findings regarding the STM-induced dissociation using constrained DFT. The coupling of STM-induced ion resonances to nuclear degrees of freedom is simulated with AIMD using the Gadzuk averaging approach for open systems. From this data, we predict a 4 fs lifetime for the cationic resonance. For the anion model, desorption could not be observed. In addition, the same cluster models are used for transition-state theory calculations, which are compared to and validated against time-lapse STM experiments. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpcc.1c02612 SN - 1932-7447 SN - 1932-7455 VL - 125 IS - 22 SP - 12175 EP - 12184 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hänsel, Marc A1 - Barta, Christoph A1 - Rietze, Clemens A1 - Utecht, Manuel Martin A1 - Rueck-Braun, Karola A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Two-Dimensional Nonlinear Optical Switching Materials BT - Molecular Engineering toward High Nonlinear Optical Contrasts JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Combining photochromism and nonlinear optical (NLO) properties of molecular switches-functionalized self-assembled monolayers (SAMs) represents a promising concept toward novel photonic and optoelectronic devices. Using second harmonic generation, density functional theory, and correlated wave function methods, we studied the switching abilities as well as the NLO contrasts between different molecular states of various fulgimide-containing SAMs on Si(111). Controlled variations of the linker systems as well as of the fulgimides enabled us to demonstrate very efficient reversible photoinduced ring-opening/closure reactions between the open and closed forms of the fulgimides. Thus, effective cross sections on the order of 10(-18) cm(-2) are observed. Moreover, the reversible switching is accompanied by pronounced NLO contrasts up to 32%. Further molecular engineering of the photochromic switches and the linker systems may even increase the NLO contrast upon switching. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b08212 SN - 1932-7447 SN - 1932-7455 VL - 122 IS - 44 SP - 25555 EP - 25564 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Herder, Martin A1 - Utecht, Manuel Martin A1 - Manicke, Nicole A1 - Grubert, Lutz A1 - Pätzel, Michael A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Switching with orthogonal stimuli electrochemical ring-closure and photochemical ring-opening of bis(thiazolyl) maleimides JF - Chemical science N2 - The photochemistry as well as electrochemistry of novel donor-acceptor bis(morpholinothiazolyl)maleimides has been investigated. Proper substitution of these diarylethene-type molecular switches leads to the unique situation in which their ring-closure can only be accomplished electrochemically, while ring-opening can only be achieved photochemically. Hence, these switches operate with orthogonal stimuli, i.e. redox potential and light, respectively. The switch system could be optimized by introducing trifluoromethyl groups at the reactive carbon atoms in order to avoid by-product formation during oxidative ring closure. Both photochemical and electrochemical pathways were investigated for methylated, trifluoromethylated, and nonsymmetrical bis(morpholinothiazolyl) maleimides as well as the bis(morpholinothiazolyl) cyclopentene reference compound. With the aid of the nonsymmetrical "mixed" derivative, the mechanism of electrochemically driven ring closure could be elucidated and seems to proceed via a dicationic intermediate generated by two-fold oxidation. All experimental work has been complemented by density functional theory that provides detailed insights into the thermodynamics of the ring-open and closed forms, the nature of their excited states, and the reactivity of their neutral as well as ionized species in different electronic configurations. The particular diarylethene systems described herein could serve in multifunctional (logic) devices operated by different stimuli (inputs) and may pave the way to converting light into electrical energy via photoinduced "pumping" of redox-active meta-stable states. Y1 - 2013 U6 - https://doi.org/10.1039/c2sc21681g SN - 2041-6520 VL - 4 IS - 3 SP - 1028 EP - 1040 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Moldt, Thomas A1 - Przyrembel, Daniel A1 - Gahl, Cornelius A1 - Weinelt, Martin A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers N2 - The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10−18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 196 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-81198 ER - TY - JOUR A1 - Goulet-Hanssens, Alexis A1 - Utecht, Manuel A1 - Mutruc, Dragos A1 - Titov, Evgenii A1 - Schwarz, Jutta A1 - Grubert, Lutz A1 - Bleger, David A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Electrocatalytic Z -> E Isomerization of Azobenzenes JF - Journal of the American Chemical Society N2 - A variety of azobenzenes were synthesized to study the behavior of their E and Z isomers upon electrochemical reduction. Our results show that the radical anion of the Z isomer is able to rapidly isomerize to the corresponding E configured counterpart with a dramatically enhanced rate as compared to the neutral species. Due to a subsequent electron transfer from the formed E radical anion to the neutral Z starting material the overall transformation is catalytic in electrons; i.e., a substoichiometric amount of reduced species can isomerize the entire mixture. This pathway greatly increases the efficiency of (photo)switching while also allowing one to reach photostationary state compositions that are not restricted to the spectral separation of the individual azobenzene isomers and their quantum yields. In addition, activating this radical isomerization pathway with photoelectron transfer agents allows us to override the intrinsic properties of an azobenzene species by triggering the reverse isomerization direction (Z -> E) by the same wavelength of light, which normally triggers E -> Z isomerization. The behavior we report appears to be general, implying that the metastable isomer of a photoswitch can be isomerized to the more stable one catalytically upon reduction, permitting the optimization of azobenzene switching in new as well as indirect ways. Y1 - 2017 U6 - https://doi.org/10.1021/jacs.6b10822 SN - 0002-7863 VL - 139 IS - 1 SP - 335 EP - 341 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Luo, Ying A1 - Utecht, Manuel Martin A1 - Dokic, Jadranka A1 - Korchak, Sergey A1 - Vieth, Hans-Martin A1 - Haag, Rainer A1 - Saalfrank, Peter T1 - Cis-trans isomerisation of substituted aromatic imines a comparative experimental and theoretical study JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - The cis-trans isomerisation of N-benzylideneaniline (NBA) and derivatives containing a central C=N bond has been investigated experimentally and theoretically. Eight different NBA molecules in three different solvents were irradiated to enforce a photochemical trans (hv) -> cis isomerisation and the kinetics of the thermal backreaction cis (Delta)-> trans were determined by NMR spectroscopy measurements in the temperature range between 193 and 288 K. Theoretical calculations using density functional theory and Eyring transition-state theory were carried out for 12 different NBA species in the gas phase and three different solvents to compute thermal isomerisation rates of the thermal back reaction. While the computed absolute rates are too large, they reveal and explain experimental trends. Time-dependent density functional theory provides optical spectra for vertical transitions and excitation energy differences between trans and cis forms. Together with isomerisation rates, the latter can be used to identify "optimal switches" with good photochromicity and reasonable thermal stability. KW - density functional calculations KW - imines KW - isomerization KW - photochemistry KW - thermochemistry Y1 - 2011 U6 - https://doi.org/10.1002/cphc.201100179 SN - 1439-4235 VL - 12 IS - 12 SP - 2311 EP - 2321 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers a study based on density functional theory JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 angstrom and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures. Y1 - 2011 U6 - https://doi.org/10.1039/c1cp22793a SN - 1463-9076 VL - 13 IS - 48 SP - 21608 EP - 21614 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Moldt, Thomas A1 - Przyrembel, Daniel A1 - Gahl, Cornelius A1 - Weinelt, Martin A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10(-18) cm(2) for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp03093e SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 27 SP - 18079 EP - 18086 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Hebert, Andreas A1 - Rück-Braun, Karola A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Reversible Photoswitching of the Interfacial Nonlinear Optical Response JF - The journal of physical chemistry letters N2 - Incorporating photochromic molecules into organic/inorganic hybrid materials may lead to photoresponsive systems. In such systems, the second-order nonlinear properties can be controlled via external stimulation with light at an appropriate wavelength. By creating photochromic molecular switches containing self-assembled monolayers on Si(111), we can demonstrate efficient reversible switching, which is accompanied by a pronounced modulation of the nonlinear optical (NLO) response of the system. The concept of utilizing functionalized photoswitchable Si surfaces could be a way for the generation of two-dimensional NLO switching materials, which are promising for applications in photonic and optoelectronic devices. Y1 - 2015 U6 - https://doi.org/10.1021/jz502477m SN - 1948-7185 VL - 6 IS - 3 SP - 505 EP - 509 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bronner, C. A1 - Leyssner, F. A1 - Stremlau, S. A1 - Utecht, Manuel Martin A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Tegeder, P. T1 - Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: End states, band gap, and dispersion JF - Physical review : B, Condensed matter and materials physics N2 - Angle-resolved two-photon photoemission and high-resolution electron energy loss spectroscopy are employed to derive the electronic structure of a subnanometer atomically precise quasi-one-dimensional graphene nanoribbon (GNR) on Au(111). We resolved occupied and unoccupied electronic bands including their dispersion and determined the band gap, which possesses an unexpectedly large value of 5.1 eV. Supported by density functional theory calculations for the idealized infinite polymer and finite size oligomers, an unoccupied nondispersive electronic state with an energetic position in the middle of the band gap of the GNR could be identified. This state resides at both ends of the ribbon (end state) and is only found in the finite sized systems, i.e., the oligomers. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevB.86.085444 SN - 1098-0121 VL - 86 IS - 8 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Bronner, Christopher A1 - Utecht, Manuel Martin A1 - Haase, Anton A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Tegeder, Petra T1 - Electronic structure changes during the surface-assisted formation of a graphene nanoribbon JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - High conductivity and a tunability of the band gap make quasi-one-dimensional graphene nanoribbons (GNRs) highly interesting materials for the use in field effect transistors. Especially bottom-up fabricated GNRs possess well-defined edges which is important for the electronic structure and accordingly the band gap. In this study we investigate the formation of a sub-nanometer wide armchair GNR generated on a Au(111) surface. The on-surface synthesis is thermally activated and involves an intermediate non-aromatic polymer in which the molecular precursor forms polyanthrylene chains. Employing angle-resolved two-photon photoemission in combination with density functional theory calculations we find that the polymer exhibits two dispersing states which we attribute to the valence and the conduction band, respectively. While the band gap of the non-aromatic polymer obtained in this way is relatively large, namely 5.25 +/- 0.06 eV, the gap of the corresponding aromatic GNR is strongly reduced which we attribute to the different degree of electron delocalization in the two systems. Y1 - 2014 U6 - https://doi.org/10.1063/1.4858855 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Knie, Christopher A1 - Utecht, Manuel Martin A1 - Zhao, Fangli A1 - Kulla, Hannes A1 - Kovalenko, Sergey A1 - Brouwer, Albert M. A1 - Saalfrank, Peter A1 - Hecht, Stefan A1 - Bleger, David T1 - ortho-Fluoroazobenzenes: visible light switches with very long-lived Z isomers JF - Chemistry - a European journal N2 - Improving the photochemical properties of molecular photoswitches is crucial for the development of light-responsive systems in materials and life sciences. ortho-Fluoroazobenzenes are a new class of rationally designed photochromic azo compounds with optimized properties, such as the ability to isomerize with visible light only, high photoconversions, and unprecedented robust bistable character. Introducing sigma-electron-withdrawing F atoms ortho to the N=N unit leads to both an effective separation of the n -> pi* bands of the E and Z isomers, thus offering the possibility of using these two transitions for selectively inducing E/Z iso-merizations, and greatly enhanced thermal stability of the Z isomers. Additional para-electron-withdrawing groups (EWGs) work in concert with ortho-F atoms, giving rise to enhanced separation of the n -> pi* transitions. A comprehensive study of the effect of substitution on the key photochemical properties of ortho-fluoroazobenzenes is reported herein. In particular, the position, number, and nature of the EWGs have been varied, and the visible light photoconversions, quantum yields of isomerization, and thermal stabilities have been measured and rationalized by DFT calculations. KW - azobenzenes KW - photochromism KW - photoswitches KW - substituent effects KW - visible light Y1 - 2014 U6 - https://doi.org/10.1002/chem.201404649 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 50 SP - 16492 EP - 16501 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Moldt, Thomas A1 - Przyrembel, Daniel A1 - Gahl, Cornelius A1 - Weinelt, Martin A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10−18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp03093e SN - 1463-9076 SN - 1463-9084 VL - 27 IS - 17 SP - 18079 EP - 18086 PB - Royal Society of Chemistry CY - Cambridge ER - TY - THES A1 - Utecht, Manuel Martin T1 - Zur Optimierung und dem Auslesen molekularer Schalter BT - quantenchemische Untersuchungen an vier Beispielen Y1 - 2015 ER -