TY - JOUR A1 - Bufe, Aaron A1 - Turowski, Jens M. A1 - Burbank, Douglas W. A1 - Paola, Chris A1 - Wickert, Andrew D. A1 - Tofelde, Stefanie T1 - Controls on the lateral channel-migration rate of braided channel systems in coarse non-cohesive sediment JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - Lateral movements of alluvial river channels control the extent and reworking rates of alluvial fans, floodplains, deltas, and alluvial sections of bedrock rivers. These lateral movements can occur by gradual channel migration or by sudden changes in channel position (avulsions). Whereas models exist for rates of river avulsion, we lack a detailed understanding of the rates of lateral channel migration on the scale of a channel belt. In a two-step process, we develop here an expression for the lateral migration rate of braided channel systems in coarse, non-cohesive sediment. On the basis of photographic and topographic data from laboratory experiments of braided channels performed under constant external boundary conditions, we first explore the impact of autogenic variations of the channel-system geometry (i.e. channel-bank heights, water depths, channel-system width, and channel slope) on channel-migration rates. In agreement with theoretical expectations, we find that, under such constant boundary conditions, the laterally reworked volume of sediment is constant and lateral channel-migration rates scale inversely with the channel-bank height. Furthermore, when channel-bank heights are accounted for, lateral migration rates are independent of the remaining channel geometry parameters. These constraints allow us, in a second step, to derive two alternative expressions for lateral channel-migration rates under different boundary conditions using dimensional analysis. Fits of a compilation of laboratory experiments to these expressions suggest that, for a given channel bank-height, migration rates are strongly sensitive to water discharges and more weakly sensitive to sediment discharges. In addition, external perturbations, such as changes in sediment and water discharges or base level fall, can indirectly affect lateral channel-migration rates by modulating channel-bank heights. KW - braided alluvial rivers KW - physical experiments KW - channel migration Y1 - 2019 U6 - https://doi.org/10.1002/esp.4710 SN - 0197-9337 SN - 1096-9837 VL - 44 IS - 14 SP - 2823 EP - 2836 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Bufe, Aaron A1 - Turowski, Jens M. T1 - Hillslope Sediment Supply Limits Alluvial Valley Width JF - AGU Advances N2 - River-valley morphology preserves information on tectonic and climatic conditions that shape landscapes. Observations suggest that river discharge and valley-wall lithology are the main controls on valley width. Yet, current models based on these observations fail to explain the full range of cross-sectional valley shapes in nature, suggesting hitherto unquantified controls on valley width. In particular, current models cannot explain the existence of paired terrace sequences that form under cyclic climate forcing. Paired river terraces are staircases of abandoned floodplains on both valley sides, and hence preserve past valley widths. Their formation requires alternating phases of predominantly river incision and predominantly lateral planation, plus progressive valley narrowing. While cyclic Quaternary climate changes can explain shifts between incision and lateral erosion, the driving mechanism of valley narrowing is unknown. Here, we extract valley geometries from climatically formed, alluvial river-terrace sequences and show that across our dataset, the total cumulative terrace height (here: total valley height) explains 90%–99% of the variance in valley width at the terrace sites. This finding suggests that valley height, or a parameter that scales linearly with valley height, controls valley width in addition to river discharge and lithology. To explain this valley-width-height relationship, we reformulate existing valley-width models and suggest that, when adjusting to new boundary conditions, alluvial valleys evolve to a width at which sediment removal from valley walls matches lateral sediment supply from hillslope erosion. Such a hillslope-channel coupling is not captured in current valley-evolution models. Our model can explain the existence of paired terrace sequences under cyclic climate forcing and relates valley width to measurable field parameters. Therefore, it facilitates the reconstruction of past climatic and tectonic conditions from valley topography. Y1 - 2022 U6 - https://doi.org/10.1029/2021AV000641 SN - 2576-604X PB - American Geophysical Union (AGU); Wiley CY - Hoboken, New Jersey, USA ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Savi, Sara A1 - Wickert, Andrew D. A1 - Bufe, Aaron A1 - Schildgen, Taylor F. T1 - Alluvial channel response to environmental perturbations BT - fill-terrace formation and sediment-signal disruption JF - Earth Surface Dynamics N2 - The sensitivity of fluvial systems to tectonic and climatic boundary conditions allows us to use the geomorphic and stratigraphic records as quantitative archives of past climatic and tectonic conditions. Thus, fluvial terraces that form on alluvial fans and floodplains as well as the rate of sediment export to oceanic and continental basins are commonly used to reconstruct paleoenvironments. However, we currently lack a systematic and quantitative understanding of the transient evolution of fluvial systems and their associated sediment storage and release in response to changes in base level, water input, and sediment input. Such knowledge is necessary to quantify past environmental change from terrace records or sedimentary deposits and to disentangle the multiple possible causes for terrace formation and sediment deposition. Here, we use a set of seven physical experiments to explore terrace formation and sediment export from a single, braided channel that is perturbed by changes in upstream water discharge or sediment supply, or through downstream base-level fall. Each perturbation differently affects (1) the geometry of terraces and channels, (2) the timing of terrace cutting, and (3) the transient response of sediment export from the basin. In general, an increase in water discharge leads to near-instantaneous channel incision across the entire fluvial system and consequent local terrace cutting, thus preserving the initial channel slope on terrace surfaces, and it also produces a transient increase in sediment export from the system. In contrast, a decreased upstream sediment-supply rate may result in longer lag times before terrace cutting, leading to terrace slopes that differ from the initial channel slope, and also lagged responses in sediment export. Finally, downstream base-level fall triggers the upstream propagation of a diffuse knickzone, forming terraces with upstream-decreasing ages. The slope of terraces triggered by base-level fall mimics that of the newly adjusted active channel, whereas slopes of terraces triggered by a decrease in upstream sediment discharge or an increase in upstream water discharge are steeper compared to the new equilibrium channel. By combining fillterrace records with constraints on sediment export, we can distinguish among environmental perturbations that would otherwise remain unresolved when using just one of these records. Y1 - 2019 U6 - https://doi.org/10.5194/esurf-7-609-2019 SN - 2196-6311 SN - 2196-632X VL - 7 SP - 609 EP - 631 PB - Copernicus Publ. CY - Göttingen ER - TY - GEN A1 - Tofelde, Stefanie A1 - Savi, Sara A1 - Wickert, Andrew D. A1 - Bufe, Aaron A1 - Schildgen, Taylor F. T1 - Alluvial channel response to environmental perturbations BT - fill-terrace formation and sediment-signal disruption T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The sensitivity of fluvial systems to tectonic and climatic boundary conditions allows us to use the geomorphic and stratigraphic records as quantitative archives of past climatic and tectonic conditions. Thus, fluvial terraces that form on alluvial fans and floodplains as well as the rate of sediment export to oceanic and continental basins are commonly used to reconstruct paleoenvironments. However, we currently lack a systematic and quantitative understanding of the transient evolution of fluvial systems and their associated sediment storage and release in response to changes in base level, water input, and sediment input. Such knowledge is necessary to quantify past environmental change from terrace records or sedimentary deposits and to disentangle the multiple possible causes for terrace formation and sediment deposition. Here, we use a set of seven physical experiments to explore terrace formation and sediment export from a single, braided channel that is perturbed by changes in upstream water discharge or sediment supply, or through downstream base-level fall. Each perturbation differently affects (1) the geometry of terraces and channels, (2) the timing of terrace cutting, and (3) the transient response of sediment export from the basin. In general, an increase in water discharge leads to near-instantaneous channel incision across the entire fluvial system and consequent local terrace cutting, thus preserving the initial channel slope on terrace surfaces, and it also produces a transient increase in sediment export from the system. In contrast, a decreased upstream sediment-supply rate may result in longer lag times before terrace cutting, leading to terrace slopes that differ from the initial channel slope, and also lagged responses in sediment export. Finally, downstream base-level fall triggers the upstream propagation of a diffuse knickzone, forming terraces with upstream-decreasing ages. The slope of terraces triggered by base-level fall mimics that of the newly adjusted active channel, whereas slopes of terraces triggered by a decrease in upstream sediment discharge or an increase in upstream water discharge are steeper compared to the new equilibrium channel. By combining fillterrace records with constraints on sediment export, we can distinguish among environmental perturbations that would otherwise remain unresolved when using just one of these records. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 762 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437185 SN - 1866-8372 IS - 762 SP - 609 EP - 631 ER - TY - GEN A1 - Tofelde, Stefanie A1 - Bufe, Aaron A1 - Turowski, Jens M. T1 - Hillslope Sediment Supply Limits Alluvial Valley Width T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - River-valley morphology preserves information on tectonic and climatic conditions that shape landscapes. Observations suggest that river discharge and valley-wall lithology are the main controls on valley width. Yet, current models based on these observations fail to explain the full range of cross-sectional valley shapes in nature, suggesting hitherto unquantified controls on valley width. In particular, current models cannot explain the existence of paired terrace sequences that form under cyclic climate forcing. Paired river terraces are staircases of abandoned floodplains on both valley sides, and hence preserve past valley widths. Their formation requires alternating phases of predominantly river incision and predominantly lateral planation, plus progressive valley narrowing. While cyclic Quaternary climate changes can explain shifts between incision and lateral erosion, the driving mechanism of valley narrowing is unknown. Here, we extract valley geometries from climatically formed, alluvial river-terrace sequences and show that across our dataset, the total cumulative terrace height (here: total valley height) explains 90%–99% of the variance in valley width at the terrace sites. This finding suggests that valley height, or a parameter that scales linearly with valley height, controls valley width in addition to river discharge and lithology. To explain this valley-width-height relationship, we reformulate existing valley-width models and suggest that, when adjusting to new boundary conditions, alluvial valleys evolve to a width at which sediment removal from valley walls matches lateral sediment supply from hillslope erosion. Such a hillslope-channel coupling is not captured in current valley-evolution models. Our model can explain the existence of paired terrace sequences under cyclic climate forcing and relates valley width to measurable field parameters. Therefore, it facilitates the reconstruction of past climatic and tectonic conditions from valley topography. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1289 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-572879 SN - 1866-8372 IS - 1289 ER - TY - JOUR A1 - Schwanghart, Wolfgang A1 - Bernhardt, Anne A1 - Stolle, Amelie A1 - Hoelzmann, Philipp A1 - Adhikari, Basanta R. A1 - Andermann, Christoff A1 - Tofelde, Stefanie A1 - Merchel, Silke A1 - Rugel, Georg A1 - Fort, Monique A1 - Korup, Oliver T1 - Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya JF - Science N2 - Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal’s second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away. Y1 - 2016 U6 - https://doi.org/10.1126/science.aac9865 SN - 0036-8075 SN - 1095-9203 VL - 351 SP - 147 EP - 150 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - GEN A1 - Tofelde, Stefanie A1 - Bernhardt, Anne A1 - Guerit, Laure A1 - Romans, Brian W. T1 - Times Associated With Source-to-Sink Propagation of Environmental Signals During Landscape Transience T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sediment archives in the terrestrial and marine realm are regularly analyzed to infer changes in climate, tectonic, or anthropogenic boundary conditions of the past. However, contradictory observations have been made regarding whether short period events are faithfully preserved in stratigraphic archives; for instance, in marine sediments offshore large river systems. On the one hand, short period events are hypothesized to be non-detectable in the signature of terrestrially derived sediments due to buffering during sediment transport along large river systems. On the other hand, several studies have detected signals of short period events in marine records offshore large river systems. We propose that this apparent discrepancy is related to the lack of a differentiation between different types of signals and the lack of distinction between river response times and signal propagation times. In this review, we (1) expand the definition of the term ‘signal’ and group signals in sub-categories related to hydraulic grain size characteristics, (2) clarify the different types of ‘times’ and suggest a precise and consistent terminology for future use, and (3) compile and discuss factors influencing the times of signal transfer along sediment routing systems and how those times vary with hydraulic grain size characteristics. Unraveling different types of signals and distinctive time periods related to signal propagation addresses the discrepancies mentioned above and allows a more comprehensive exploration of event preservation in stratigraphy – a prerequisite for reliable environmental reconstructions from terrestrially derived sedimentary records. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1230 KW - signal propagation KW - landscape transience KW - source-to-sink KW - stratigraphy KW - response time Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-544431 SN - 1866-8372 SP - 1 EP - 26 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Bernhardt, Anne A1 - Guerit, Laure A1 - Romans, Brian W. T1 - Times Associated With Source-to-Sink Propagation of Environmental Signals During Landscape Transience JF - Frontiers in Earth Science N2 - Sediment archives in the terrestrial and marine realm are regularly analyzed to infer changes in climate, tectonic, or anthropogenic boundary conditions of the past. However, contradictory observations have been made regarding whether short period events are faithfully preserved in stratigraphic archives; for instance, in marine sediments offshore large river systems. On the one hand, short period events are hypothesized to be non-detectable in the signature of terrestrially derived sediments due to buffering during sediment transport along large river systems. On the other hand, several studies have detected signals of short period events in marine records offshore large river systems. We propose that this apparent discrepancy is related to the lack of a differentiation between different types of signals and the lack of distinction between river response times and signal propagation times. In this review, we (1) expand the definition of the term ‘signal’ and group signals in sub-categories related to hydraulic grain size characteristics, (2) clarify the different types of ‘times’ and suggest a precise and consistent terminology for future use, and (3) compile and discuss factors influencing the times of signal transfer along sediment routing systems and how those times vary with hydraulic grain size characteristics. Unraveling different types of signals and distinctive time periods related to signal propagation addresses the discrepancies mentioned above and allows a more comprehensive exploration of event preservation in stratigraphy – a prerequisite for reliable environmental reconstructions from terrestrially derived sedimentary records. KW - signal propagation KW - landscape transience KW - source-to-sink KW - stratigraphy KW - response time Y1 - 2021 U6 - https://doi.org/10.3389/feart.2021.628315 SN - 2296-6463 VL - 9 SP - 1 EP - 26 PB - Frontiers Media CY - Lausanne, Schweiz ER - TY - THES A1 - Tofelde, Stefanie T1 - Signals stored in sediment T1 - Signale in Sedimenten BT - fluvial sediments as records of landscape evolution BT - wie Flusssedimente Landschaftsentwicklung aufzeichnen N2 - Tectonic and climatic boundary conditions determine the amount and the characteristics (size distribution and composition) of sediment that is generated and exported from mountain regions. On millennial timescales, rivers adjust their morphology such that the incoming sediment (Qs,in) can be transported downstream by the available water discharge (Qw). Changes in climatic and tectonic boundary conditions thus trigger an adjustment of the downstream river morphology. Understanding the sensitivity of river morphology to perturbations in boundary conditions is therefore of major importance, for example, for flood assessments, infrastructure and habitats. Although we have a general understanding of how rivers evolve over longer timescales, the prediction of channel response to changes in boundary conditions on a more local scale and over shorter timescales remains a major challenge. To better predict morphological channel evolution, we need to test (i) how channels respond to perturbations in boundary conditions and (ii) how signals reflecting the persisting conditions are preserved in sediment characteristics. This information can then be applied to reconstruct how local river systems have evolved over time. In this thesis, I address those questions by combining targeted field data collection in the Quebrada del Toro (Southern Central Andes of NW Argentina) with cosmogenic nuclide analysis and remote sensing data. In particular, I (1) investigate how information on hillslope processes is preserved in the 10Be concentration (geochemical composition) of fluvial sediments and how those signals are altered during downstream transport. I complement the field-based approach with physical experiments in the laboratory, in which I (2) explore how changes in sediment supply (Qs,in) or water discharge (Qw) generate distinct signals in the amount of sediment discharge at the basin outlet (Qs,out). With the same set of experiments, I (3) study the adjustments of alluvial channel morphology to changes in Qw and Qs,in, with a particular focus in fill-terrace formation. I transfer the findings from the experiments to the field to (4) reconstruct the evolution of a several-hundred meter thick fluvial fill-terrace sequence in the Quebrada del Toro. I create a detailed terrace chronology and perform reconstructions of paleo-Qs and Qw from the terrace deposits. In the following paragraphs, I summarize my findings on each of these four topics. First, I sampled detrital sediment at the outlet of tributaries and along the main stem in the Quebrada del Toro, analyzed their 10Be concentration ([10Be]) and compared the data to a detailed hillslope-process inventory. The often observed non-linear increase in catchment-mean denudation rate (inferred from [10Be] in fluvial sediment) with catchment-median slope, which has commonly been explained by an adjustment in landslide-frequency, coincided with a shift in the main type of hillslope processes. In addition, the [10Be] in fluvial sediments varied with grain-size. I defined the normalized sand-gravel-index (NSGI) as the 10Be-concentration difference between sand and gravel fractions divided by their summed concentrations. The NSGI increased with median catchment slope and coincided with a shift in the prevailing hillslope processes active in the catchments, thus making the NSGI a potential proxy for the evolution of hillslope processes over time from sedimentary deposits. However, the NSGI recorded hillslope-processes less well in regions of reduced hillslope-channel connectivity and, in addition, has the potential to be altered during downstream transport due to lateral sediment input, size-selective sediment transport and abrasion. Second, my physical experiments revealed that sediment discharge at the basin outlet (Qs,out) varied in response to changes in Qs,in or Qw. While changes in Qw caused a distinct signal in Qs,out during the transient adjustment phase of the channel to new boundary conditions, signals related to changes in Qs,in were buffered during the transient phase and likely only become apparent once the channel is adjusted to the new conditions. The temporal buffering is related to the negative feedback between Qs,in and channel-slope adjustments. In addition, I inferred from this result that signals extracted from the geochemical composition of sediments (e.g., [10Be]) are more likely to represent modern-day conditions during times of aggradation, whereas the signal will be temporally buffered due to mixing with older, remobilized sediment during times of channel incision. Third, the same set of experiments revealed that river incision, channel-width narrowing and terrace cutting were initiated by either an increase in Qw, a decrease in Qs,in or a drop in base level. The lag-time between the external perturbation and the terrace cutting determined (1) how well terrace surfaces preserved the channel profile prior to perturbation and (2) the degree of reworking of terrace-surface material. Short lag-times and well preserved profiles occurred in cases with a rapid onset of incision. Also, lag-times were synchronous along the entire channel after upstream perturbations (Qw, Qs,in), whereas base-level fall triggered an upstream migrating knickzone, such that lag-times increased with distance upstream. Terraces formed after upstream perturbations (Qw, Qs,in) were always steeper when compared to the active channel in new equilibrium conditions. In the base-level fall experiment, the slope of the terrace-surfaces and the modern channel were similar. Hence, slope comparisons between the terrace surface and the modern channel can give insights into the mechanism of terrace formation. Fourth, my detailed terrace-formation chronology indicated that cut-and-fill episodes in the Quebrada del Toro followed a ~100-kyr cyclicity, with the oldest terraces ~ 500 kyr old. The terraces were formed due to variability in upstream Qw and Qs. Reconstructions of paleo-Qs over the last 500 kyr, which were restricted to times of sediment deposition, indicated only minor (up to four-fold) variations in paleo-denudation rates. Reconstructions of paleo-Qw were limited to the times around the onset of river incision and revealed enhanced discharge from 10 to 85% compared to today. Such increases in Qw are in agreement with other quantitative paleo-hydrological reconstructions from the Eastern Andes, but have the advantage of dating further back in time. N2 - Tektonische und klimatische Bedingungen bestimmen die Menge, Größenverteilung und Zusammensetzung von Sedimenten, welche in Gebirgsregionen produziert und von dort exportiert werden. Über Jahrtausende hinweg passen Flüsse ihre Morphologie an, um den Sedimenteintrag (Qs,in) mit dem verfügbaren Wasserabfluss (Qw) flussabwärts zu transportieren. Änderungen in den klimatischen oder tektonischen Randbedingungen lösen flussabwärts eine Anpassung der Flussmorphologie aus. Ein besseres Verständnis darüber, wie sensitiv Flüsse auf Perturbationen in den Randbedingungen reagieren, ist entscheidend, um beispielsweise Überflutungspotential besser abschätzen zu können. Obwohl wir generell ein gutes Verständnis für die Entwicklung von Flüssen auf langen Zeitskalen haben, können wir durch veränderte Randbedingungen ausgelöste Flussdynamiken lokal und auf kurzen Zeitskalen nur schwer vorhersagen. Um die Entwicklung der Flussmorphologie besser zu verstehen, beziehungsweise vorhersagen zu können, müssen wir testen, (1) wie Flüsse auf veränderte Randbedingungen reagieren und (2) wie Signale, welche die vorherschenden Bedingungen reflektieren, in Sedimenten konserviert werden. Diese Informationen können wir nutzen, um die Entwicklung von lokalen Flusssystemen zu rekonstruieren. In der vorliegenden Arbeit adressiere ich diese Fragen durch die Analyse von kosmogenen Nukleiden und Fernerkundungsdaten in der Quebrada del Toro (südliche Zentralanden in NW Argentinien). Insbesondere untersuche ich, wie (1) Informationen über Hangprozesse in der 10Be Konzentration (geochemische Zusammensetzung) von Flusssedimenten gespeichert werden und wie diese Signale durch den Transport flussabwärts überprägt werden. Ich ergänze diesen geländebasierten Ansatz mit physikalischen Experimenten im Labor, mit welchen ich untersuche, wie (2) Veränderungen in der Sedimentzufuhr (Qs,in) oder der Abflussmenge (Qw) eindeutige Signale in der Menge an Sedimentaustrag (Qs,out) am Beckenauslass generieren. Mit denselben Experimenten untersuche ich (3) die Anpassung der Flussmorphologie auf Veränderungen in Qw und Qs,in mit einem speziellen Fokus auf der Entstehung von Flussterrassen. Ich übertrage die Erkenntnisse von den Experimenten ins Gelände und (4) rekonstruiere die Entstehung von einer mehreren hundert Meter mächtigen Terrassensequenz in der Quebrada del Toro. Ich erstelle eine detaillierte Terrassenchronologie und führe mit Hilfe der Terrassenablagerungen Rekonstruktion von Qs und Qw für die Vergangenheit durch. In den folgenden Paragraphen fasse ich meine Ergebnisse zu den vier Forschungsschwerpunkten dieser Arbeit zusammen. Erstens habe ich Flusssedimente an den Mündungen von Nebenflüssen, sowie entlang des Hauptflusses in der Quebrada del Toro beprobt, die jeweilige 10Be Konzentration ([10Be]) bestimmt und die Daten mit einem detaillierten Hangprozess-Inventar verglichen. Der häufig beobachtete, nicht-lineare Anstieg der durchschnittlichen Denudationsrate des Einzugsgebietes (abgeleitet aus der [10Be] der Flusssedimente) mit der Hangneigung eines Einzugsgebietes fiel mit einer Verschiebung der wesentlichen, aktiven Hangprozesse zusammen. Zusätzlich variierte die [10Be] der Flusssedimente mit den Korngrößen. Ich habe den normalisierten Sand-Schotter-Index (NSGI) definiert, welcher sich aus der Differenz der [10Be] zwischen der Sand- und der Kiesfraktion, geteilt durch ihre summierte Konzentration, berechnet. Der NSGI stieg mit dem Median der Hangneigung eines Einzugsgebietes und fiel wiederum mit einer Verschiebung der vorherrschenden Hangprozesse im jeweiligen Einzugsgebiet zusammen. Diese Beobachtung qualifiziert den NSGI als einen potentiellen Proxy, um die Entwicklung von Hangprozessen über die Zeit aus Sedimentablagerungen zu rekonstruieren. Es ist jedoch einzuschränken, dass der NSGI durch den Transport flussabwärts auf Grund von temporärer Sedimentablagerung, lateraler Sedimentzufuhr, größenselektivem Sedimenttransport und Abrasion überprägt werden kann. Zweitens haben die Laborexperimente gezeigt, dass der Sedimentaustrag am Beckenauslass (Qs,out) auf Grund von Veränderungen in Qs,in oder Qw variiert. Während Veränderungen in Qw ein eindeutiges Signal in Qs,out während der transienten Anpassungsphase des Flusses an die neuen Randbedingungen hervorriefen, wurden durch Qs,in ausgelöste Signale während der transienten Anpassungsphase gepuffert. Sie werden vermutlich erst sichtbar, nachdem der Fluss sich an die neuen Randbedingungen angepasst hat. Das zeitliche Puffern ist mit der negativen Rückkopplung zwischen Qs,in und dem Flussgradienten zu erklären. Zusätzlich deuten die Ergebnisse darauf hin, dass sich Signale, welche in der geochemischen Zusammenstzung von Sediment gespeichert sind (z.B. [10Be]), in Phasen der Flussaufschotterung mit einer höheren Wahrscheinlichkeit die heutigen Bedingungen repräsentieren. Dagegen sind Signale in Zeiten der Flusseinschneidung aufgrund von Mischung mit älteren, remobilisierten Sedimenten gepuffert. Drittens haben dieselben Experimente gezeigt, dass Flusseinschneidung, Flussbettverengung sowie Terrassenbildung entweder durch eine Zunahme an Qw, eine Abnahme in Qs,in oder durch ein Absinken der Flussbasis initiiert werden konnte. Die Zeitverzögerung zwischen der Perturbation der Randbedingungen und der Terrassenformation bestimmt (1) wie gut Terrassenoberflächen das Flussprofil vom Zeitpunkt unmittelbar vor der Störung representieren und (2) den Grad an Umschichtung des Terrassenoberflächenmaterials. Kurze Verzögerungszeiten und gut erhaltende Profile konnten in Fällen eines schnellen Einsetzens der Flusseinschneidung beobachtet werden. Außerdem waren die Verzögerungszeiten entlang des Flusslaufes synchron im Falle einer Perturbation im Flussoberlauf (Qw, Qs,in), während ein Abfallen der Flussbasis einen flussaufwärts migrierenden Knickpunkt ausgelöst hat, sodass die Verzögerungszeiten in flussaufwärts Richtung zunahmen. Terrassen, welche durch Perturbationen im Flussoberlauf (Qw, Qs,in) gebildet wurden, waren steiler im Vergleich zum aktiven Fluss, nachdem dieser sich an die neuen Randbedingungen angepasst hat. In dem Experiment, bei welchem die Flussbasis abgesenkt wurde, waren die Neigung der Terrassenoberflächen und des aktiven Flussesbettes ähnlich. Daher können Vergleiche zwischen der Neigung der Terrassenoberflächen mit dem aktiven Flussbett auf den Mechanismus der Terrassenformation hinweisen. Viertens hat die detaillierte Terrassenchronologie gezeigt, dass die Einschneide-und-Ablagerungsepisoden in der Quebrada del Toro einem ~100 ka Zyklus folgen, beginnend mit der ersten Terrasse vor ca. 500 ka. Die Terrassen wurden durch Variabilität in Qw und Qs,in gebildet. Rekonstruktionen von Qs über die letzten 500 ka, beschränkt auf die Zeiten von Sedimentablagerung, zeigten eine eher geringe Variabilität (maximal vierfach) in Denudationsraten an. Rekonstruktionen des Abflusses waren beschränkt auf die Zeitpunkte um das Einsetzen der Flusseinschneidung herum und deuteten auf vermehrten Abfluss zwischen 10 und 85% im Vergleich zu heutigen Bedingungen hin. Vermehrter Abfluss in dieser Größenordnung stimmt mit anderen quantitativen Rekonstruktionen zur Hydrologie der Ost-Anden überein, diese Methode hat jedoch den Vorteil, dass sie zeitlich weiter zurück reicht. KW - sediment-routing system KW - signal propagation KW - alluvial channel morphology KW - fluvial fill terraces KW - Cenral Andes KW - Sedimenttransportsystem KW - Signalweiterleitung KW - Gerinnemorphologie KW - Flussterrassen KW - Zentralanden Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427168 ER - TY - JOUR A1 - Nieto-Moreno, Vanesa A1 - Rohrmann, Alexander A1 - van der Meer, Marcel T. J. A1 - Damste, Jaap S. Sinninghe A1 - Sachse, Dirk A1 - Tofelde, Stefanie A1 - Niedermeyer, Eva M. A1 - Strecker, Manfred A1 - Mulch, Andreas T1 - Elevation-dependent changes in n-alkane delta D and soil GDGTs across the South Central Andes JF - Earth & planetary science letters N2 - Surface uplift of large plateaus may significantly influence regional climate and more specifically precipitation patterns and temperature, sometimes complicating paleoaltimetry interpretations. Thus, understanding the topographic evolution of tectonically active mountain belts benefits from continued development of reliable proxies to reduce uncertainties in paleoaltimetry reconstructions. Lipid biomarker-based proxies provide a novel approach to stable isotope paleoaltimetry and complement authigenic or pedogenic mineral proxy materials, in particular outside semi-arid climate zones where soil carbonates are not abundant but (soil) organic matter has a high preservation potential. Here we present delta D values of soil-derived n-alkanes and mean annual air temperature (MAT) estimates based on branched glycerol dialkyl glycerol tetraether (brGDGT) distributions to assess their potential for paleoelevation reconstructions in the southern central Andes. We analyzed soil samples across two environmental and hydrological gradients that include a hillslope (26-28 degrees S) and a valley (22-24 degrees S) transect on the windward flanks of Central Andean Eastern Cordillera in NW Argentina. Our results show that present-day n-alkane delta D values and brGDGT-based MAT estimates are both linearly related with elevation and in good agreement with present-day climate conditions. Soil n-alkanes show a delta D lapse rate (A(delta D)) of -1.64 parts per thousand/100 m (R-2 = 0.91, p < 0.01) at the hillslope transect, within the range of delta D lapse rates from precipitation and surface waters in other tropical regions in the Andes like the Eastern Cordillera in Colombia and Bolivia and the Equatorial and Peruvian Andes. BrGDGT-derived soil temperatures are similar to monitored winter temperatures in the region and show a lapse rate of Delta T = -0.51 degrees C/100 m (R-2 = 0.91, p < 0.01), comparable with lapse rates from in situ soil temperature measurements, satellite derived land-surface temperatures at this transect, and weather stations from the Eastern Cordillera at similar latitude. As a result of an increasing leeward sampling position along the valley transect lapse rates are biased towards lower values and display higher scatter (Delta(delta D) = -0.9 parts per thousand/100 m, R-2 = 0.76, p < 0.01 and Delta T = -0.19 degrees C/100 m, R-2 = 0.48, p < 0.05). Despite this higher complexity, they are in line with lapse rates from stream-water samples and in situ soil temperature measurements along the same transect. Our results demonstrate that both soil n-alkane delta D values and MAT reconstructions based on brGDGTs distributions from the hillslope transect (Delta(delta D) = -1.64 parts per thousand/100 m, R-2 = 0.91, p < 0.01 and Delta T = -0.51 degrees C/100 m, R-2 = 0.91, p < 0.01) track the direct effects of orography on precipitation and temperature and hence the combined effects of local and regional hydrology as well as elevation. (C) 2016 Elsevier B.V. All rights reserved. KW - South Central Andes KW - leaf-wax n-alkane delta D KW - branched GDGTs KW - MAT(mr) paleothermometer KW - paleoaltimetry proxies KW - attitudinal transects Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.07.049 SN - 0012-821X SN - 1385-013X VL - 453 SP - 234 EP - 242 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Savi, Sara A1 - Schildgen, Taylor F. A1 - Tofelde, Stefanie A1 - Wittmann, Hella A1 - Scherler, Dirk A1 - Mey, Jürgen A1 - Alonso, Ricardo N. A1 - Strecker, Manfred T1 - Climatic controls on debris-flow activity and sediment aggradation: The Del Medio fan, NW Argentina JF - Journal of geophysical research : Earth surface N2 - In the Central Andes, several studies on alluvial terraces and valley fills have linked sediment aggradation to periods of enhanced sediment supply. However, debate continues over whether tectonic or climatic factors are most important in triggering the enhanced supply. The Del Medio catchment in the Humahuaca Basin (Eastern Cordillera, NW Argentina) is located within a transition zone between subhumid and arid climates and hosts the only active debris-flow fan within this intermontane valley. By combining Be-10 analyses of boulder and sediment samples within the Del Medio catchment, with regional morphometric measurements of nearby catchments, we identify the surface processes responsible for aggradation in the Del Medio fan and their likely triggers. We find that the fan surface has been shaped by debris flows and channel avulsions during the last 400 years. Among potential tectonic, climatic, and autogenic factors that might influence deposition, our analyses point to a combination of several favorable factors that drive aggradation. These are in particular the impact of occasional abundant rainfall on steep slopes in rock types prone to failure, located in a region characterized by relatively low rainfall amounts and limited transport capacity. These characteristics are primarily associated with the climatic transition zone between the humid foreland and the arid orogen interior, which creates an imbalance between sediment supply and sediment transfer. The conditions and processes that drive aggradation in the Del Medio catchment today may provide a modern analog for the conditions and processes that drove aggradation in other nearby tributaries in the past. Y1 - 2016 U6 - https://doi.org/10.1002/2016JF003912 SN - 2169-9003 SN - 2169-9011 VL - 121 SP - 2424 EP - 2445 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rohrmann, Alexander A1 - Sachse, Dirk A1 - Mulch, Andreas A1 - Pingel, Heiko A1 - Tofelde, Stefanie A1 - Alonso, Ricardo N. A1 - Strecker, Manfred T1 - Miocene orographic uplift forces rapid hydrological change in the southern central Andes JF - Scientific reports N2 - Rainfall in the central Andes associated with the South American Monsoon and the South American Low-Level Jet results from orographic effects on atmospheric circulation exerted by the Andean Plateau and the Eastern Cordillera. However, despite its importance for South American climate, no reliable records exist that allow decoding the evolution of thresholds and interactions between Andean topography and atmospheric circulation, especially regarding the onset of humid conditions in the inherently dry southern central Andes. Here, we employ multi-proxy isotope data of lipid biomarkers, pedogenic carbonates and volcanic glass from the Eastern Cordillera of NW Argentina and present the first long-term evapotranspiration record. We find that regional eco-hydrology and vegetation changes are associated with initiation of moisture transport via the South American Low-Level Jet at 7.6 Ma, and subsequent lateral growth of the orogen at 6.5 Ma. Our results highlight that topographically induced changes in atmospheric circulation patterns, not global climate change, were responsible for late Miocene environmental change in this part of the southern hemisphere. This suggests that mountain building over time fundamentally controlled habitat evolution along the central Andes. Y1 - 2016 U6 - https://doi.org/10.1038/srep35678 SN - 2045-2322 VL - 6 SP - 4283 EP - 4306 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Schildgen, Taylor F. A1 - Savi, Sara A1 - Pingel, Heiko A1 - Wickert, Andrew D. A1 - Bookhagen, Bodo A1 - Wittmann, Hella A1 - Alonso, Ricardo N. A1 - Cottle, John A1 - Strecker, Manfred T1 - 100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina JF - Earth & planetary science letters N2 - Fluvial fill terraces in intermontane basins are valuable geomorphic archives that can record tectonically and/or climatically driven changes of the Earth-surface process system. However, often the preservation of fill terrace sequences is incomplete and/or they may form far away from their source areas, complicating the identification of causal links between forcing mechanisms and landscape response, especially over multi-millennial timescales. The intermontane Toro Basin in the southern Central Andes exhibits at least five generations of fluvial terraces that have been sculpted into several-hundred-meter-thick Quaternary valley-fill conglomerates. New surface-exposure dating using nine cosmogenic Be-10 depth profiles reveals the successive abandonment of these terraces with a 100 kyr cyclicity between 75 +/- 7 and 487 +/- 34 ka. Depositional ages of the conglomerates, determined by four Al-26/Be-10 burial samples and U-Pb zircon ages of three intercalated volcanic ash beds, range from 18 +/- 141 to 936 +/- 170 ka, indicating that there were multiple cut-and-fill episodes. Although the initial onset of aggradation at similar to 1 Ma and the overall net incision since ca. 500 ka can be linked to tectonic processes at the narrow basin outlet, the superimposed 100 kyr cycles of aggradation and incision are best explained by eccentricity-driven climate change. Within these cycles, the onset of river incision can be correlated with global cold periods and enhanced humid phases recorded in paleoclimate archives on the adjacent Bolivian Altiplano, whereas deposition occurred mainly during more arid phases on the Altiplano and global interglacial periods. We suggest that enhanced runoff during global cold phases - due to increased regional precipitation rates, reduced evapotranspiration, or both - resulted in an increased sediment-transport capacity in the Toro Basin, which outweighed any possible increases in upstream sediment supply and thus triggered incision. Compared with two nearby basins that record precessional (21-kyr) and long-eccentricity (400-kyr) forcing within sedimentary and geomorphic archives, the recorded cyclicity scales with the square of the drainage basin length. (C) 2017 Elsevier B.V. All rights reserved. KW - Be-10 depth-profiles KW - surface inflation KW - aggradation-incision cycles KW - glacial-interglacial cycles KW - landscape response to climate change KW - Eastern Cordillera Y1 - 2017 U6 - https://doi.org/10.1016/j.epsl.2017.06.001 SN - 0012-821X SN - 1385-013X VL - 473 SP - 141 EP - 153 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schildgen, Taylor F. A1 - Robinson, Ruth A. J. A1 - Savi, Sara A1 - Phillips, William M. A1 - Spencer, Joel Q. G. A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Tofelde, Stefanie A1 - Alonso, Ricardo N. A1 - Kubik, Peter W. A1 - Binnie, Steven A. A1 - Strecker, Manfred T1 - Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity JF - Journal of geophysical research : Earth surface N2 - Fluvial fill terraces preserve sedimentary archives of landscape responses to climate change, typically over millennial timescales. In the Humahuaca Basin of NW Argentina (Eastern Cordillera, southern Central Andes), our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that the timing of past river aggradation occurred over different intervals on the western and eastern sides of the valley, despite their similar bedrock lithology, mean slopes, and precipitation. In the west, aggradation coincided with periods of increasing precipitation, while in the east, aggradation coincided with decreasing precipitation or more variable conditions. Erosion rates and grain size dependencies in our cosmogenic Be-10 analyses of modern and fill terrace sediments reveal an increased importance of landsliding compared to today on the west side during aggradation, but of similar importance during aggradation on the east side. Differences in the timing of aggradation and the Be-10 data likely result from differences in valley geometry, which causes sediment to be temporarily stored in perched basins on the east side. It appears as if periods of increasing precipitation triggered landslides throughout the region, which induced aggradation in the west, but blockage of the narrow bedrock gorges downstream from the perched basins in the east. As such, basin geometry and fluvial connectivity appear to strongly influence the timing of sediment movement through the system. For larger basins that integrate subbasins with differing geometries or degrees of connectivity (like Humahuaca), sedimentary responses to climate forcing are likely attenuated. KW - berylium-10 KW - optically stimulated luminescence KW - Humahuaca Basin KW - South American Monsoon System KW - fluvial terraces KW - landscape connectivity Y1 - 2016 U6 - https://doi.org/10.1002/2015JF003607 SN - 2169-9003 SN - 2169-9011 VL - 121 SP - 392 EP - 414 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Tofelde, Stefanie A1 - Duesing, Walter A1 - Schildgen, Taylor F. A1 - Wickert, Andrew D. A1 - Wittmann, Hella A1 - Alonso, Ricardo N. A1 - Strecker, Manfred T1 - Effects of deep-seated versus shallow hillslope processes on cosmogenic Be-10 concentrations in fluvial sand and gravel JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - Terrestrial cosmogenic nuclide (TCN) concentrations in fluvial sediment, from which denudation rates are commonly inferred, can be affected by hillslope processes. TCN concentrations in gravel and sand may differ if localized, deep-excavation processes (e.g. landslides, debris flows) affect the contributing catchment, whereas the TCN concentrations of sand and gravel tend to be more similar when diffusional processes like soil creep and sheetwash are dominant. To date, however, no study has systematically compared TCN concentrations in different detrital grain-size fractions with a detailed inventory of hillslope processes from the entire catchment. Here we compare concentrations of the TCN Be-10 in 20 detrital sand samples from the Quebrada del Toro (southern Central Andes, Argentina) to a hillslope-process inventory from each contributing catchment. Our comparison reveals a shift from low-slope gullying and scree production in slowly denuding, low-slope areas to steep-slope gullying and landsliding in fast-denuding, steep areas. To investigate whether the nature of hillslope processes (locally excavating or more uniformly denuding) may be reflected in a comparison of the Be-10 concentrations of sand and gravel, we define the normalized sand-gravel index (NSGI) as the Be-10-concentration difference between sand and gravel divided by their summed concentrations. We find a positive, linear relationship between the NSGI and median slope, such that our NSGI values broadly reflect the shift in hillslope processes from low-slope gullying and scree production to steep-slope gullying and landsliding. Higher NSGI values characterize regions affected by steep-slope gullying or landsliding. We relate the large scatter in the relationship, which is exhibited particularly in low-slope areas, to reduced hillslope-channel connectivity and associated transient sediment storage within those catchments. While high NSGI values in well-connected catchments are a reliable signal of deep-excavation processes, hillslope excavation processes may not be reliably recorded by NSGI values where sediment experiences transient storage. (c) 2018 John Wiley & Sons, Ltd. Y1 - 2018 U6 - https://doi.org/10.1002/esp.4471 SN - 0197-9337 SN - 1096-9837 VL - 43 IS - 15 SP - 3086 EP - 3098 PB - Wiley CY - Hoboken ER -