TY - JOUR A1 - Thompson, W. T. A1 - Kliem, Bernhard A1 - Toeroek, Tibor T1 - 3D reconstruction of a rotating erupting prominence JF - Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics N2 - A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight as it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48A degrees, it was possible to match some sharp features in the later part of the eruption as seen in the 304 line in EUVI and in the H alpha-sensitive bandpass of COR1 by both STEREO Ahead and Behind. These features could then be traced out in three-dimensional space, and reprojected into a view in which the eruption is directed toward the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of a parts per thousand aEuro parts per thousand 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115A degrees from the original filament orientation inferred from H alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation are reached within a parts per thousand aEuro parts per thousand 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component. KW - Corona, active KW - Prominences, active KW - Coronal mass ejections KW - Initiation and propagation KW - Magnetic fields, corona Y1 - 2012 U6 - https://doi.org/10.1007/s11207-011-9868-5 SN - 0038-0938 VL - 276 IS - 1-2 SP - 241 EP - 259 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Liu, Rui A1 - Kliem, Bernhard A1 - Toeroek, Tibor A1 - Liu, Chang A1 - Titov, Viacheslav S. A1 - Lionello, Roberto A1 - Linker, Jon A. A1 - Wang, Haimin T1 - Slow rise and partial eruption of a double-decker filament. I. observations and interpretation JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We study an active-region dextral filament that was composed of two branches separated in height by about 13 Mm, as inferred from three-dimensional reconstruction by combining SDO and STEREO-B observations. This "double-decker" configuration sustained for days before the upper branch erupted with a GOES-class M1.0 flare on 2010 August 7. Analyzing this evolution, we obtain the following main results. (1) During the hours before the eruption, filament threads within the lower branch were observed to intermittently brighten up, lift upward, and then merge with the upper branch. The merging process contributed magnetic flux and current to the upper branch, resulting in its quasi-static ascent. (2) This transfer might serve as the key mechanism for the upper branch to lose equilibrium by reaching the limiting flux that can be stably held down by the overlying field or by reaching the threshold of the torus instability. (3) The erupting branch first straightened from a reverse S shape that followed the polarity inversion line and then writhed into a forward S shape. This shows a transfer of left-handed helicity in a sequence of writhe-twist-writhe. The fact that the initial writhe is converted into the twist of the flux rope excludes the helical kink instability as the trigger process of the eruption, but supports the occurrence of the instability in the main phase, which is indeed indicated by the very strong writhing motion. (4) A hard X-ray sigmoid, likely of coronal origin, formed in the gap between the two original filament branches in the impulsive phase of the associated flare. This supports a model of transient sigmoids forming in the vertical flare current sheet. (5) Left-handed magnetic helicity is inferred for both branches of the dextral filament. (6) Two types of force-free magnetic configurations are compatible with the data, a double flux rope equilibrium and a single flux rope situated above a loop arcade. KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/756/1/59 SN - 0004-637X VL - 756 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kliem, Bernhard A1 - Toeroek, Tibor A1 - Titov, Viacheslav S. A1 - Lionello, Roberto A1 - Linker, Jon A. A1 - Liu, Rui A1 - Liu, Chang A1 - Wang, Haimin T1 - Slow rise and partial eruption of a double-decker filament. II. A double flux rope model JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov & Demoulin and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically becoming unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper I. It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium. KW - instabilities KW - magnetohydrodynamics (MHD) KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/792/2/107 SN - 0004-637X SN - 1538-4357 VL - 792 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER -