TY - JOUR A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Laepple, Thomas A1 - Dallmeyer, Anne A1 - Telford, Richard J. A1 - Ni, Jian A1 - Chen, Fahu A1 - Kong, Zhaochen A1 - Liu, Guangxiu A1 - Liu, Kam-Biu A1 - Liu, Xingqi A1 - Stebich, Martina A1 - Tang, Lingyu A1 - Tian, Fang A1 - Wang, Yongbo A1 - Wischnewski, Juliane A1 - Xu, Qinghai A1 - Yan, Shun A1 - Yang, Zhenjing A1 - Yu, Ge A1 - Zhang, Yun A1 - Zhao, Yan A1 - Zheng, Zhuo T1 - Position and orientation of the westerly jet determined Holocene rainfall patterns in China JF - Nature Communications N2 - Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-09866-8 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Tian, Fang A1 - Herzschuh, Ulrike A1 - Telford, Richard J. A1 - Mischke, Steffen A1 - Van der Meeren, Thijs A1 - Krengel, Michael T1 - A modern pollen-climate calibration set from central-western Mongolia and its application to a late glacial-Holocene record JF - Journal of biogeography N2 - AimFossil pollen spectra from lake sediments in central and western Mongolia have been used to interpret past climatic variations, but hitherto no suitable modern pollen-climate calibration set has been available to infer past climate changes quantitatively. We established such a modern pollen dataset and used it to develop a transfer function model that we applied to a fossil pollen record in order to investigate: (1) whether there was a significant moisture response to the Younger Dryas event in north-western Mongolia; and (2) whether the early Holocene was characterized by dry or wet climatic conditions. LocationCentral and western Mongolia. MethodsWe analysed pollen data from surface sediments from 90 lakes. A transfer function for mean annual precipitation (P-ann) was developed with weighted averaging partial least squares regression (WA-PLS) and applied to a fossil pollen record from Lake Bayan Nuur (49.98 degrees N, 93.95 degrees E, 932m a.s.l.). Statistical approaches were used to investigate the modern pollen-climate relationships and assess model performance and reconstruction output. ResultsRedundancy analysis shows that the modern pollen spectra are characteristic of their respective vegetation types and local climate. Spatial autocorrelation and significance tests of environmental variables show that the WA-PLS model for P-ann is the most valid function for our dataset, and possesses the lowest root mean squared error of prediction. Main conclusionsPrecipitation is the most important predictor of pollen and vegetation distributions in our study area. Our quantitative climate reconstruction indicates a dry Younger Dryas, a relatively dry early Holocene, a wet mid-Holocene and a dry late Holocene. KW - Central-western Mongolia KW - Lake Bayan Nuur KW - modern pollen KW - ordination KW - palaeoclimate reconstruction KW - palaeoecology KW - transfer functions KW - WA-PLS KW - Younger Dryas Y1 - 2014 U6 - https://doi.org/10.1111/jbi.12338 SN - 0305-0270 SN - 1365-2699 VL - 41 IS - 10 SP - 1909 EP - 1922 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Cao, Xianyong A1 - Herzschuh, Ulrike A1 - Telford, Richard J. A1 - Ni, Jian T1 - A modern pollen-climate dataset from China and Mongolia: assessing its potential for climate reconstruction JF - Review of palaeobotany and palynology : an international journal N2 - A modern pollen dataset from China and Mongolia (18-52 degrees N, 74-132 degrees E) is investigated for its potential use in climate reconstructions. The dataset includes 2559 samples, 229 terrestrial pollen taxa and four climatic variables - mean annual precipitation (P-ann): 35-2091 mm, mean annual temperature (T-ann): -12.1-25.8 degrees C, mean temperature in the coldest month (Mt(co).): -33.8-21.7 degrees C, and mean temperature in the warmest month (Mt(wa)): 03-29.8 degrees C. Modern pollen-climate relationships are assessed using canonical correspondence analysis (CCA), Huisman-Olff-Fresco (HOF) models, the modern analogue technique (MAT), and weighted averaging partial least squares (WA-PLS). Results indicate that P-ann is the most important climatic determinant of pollen distribution and the most promising climate variable for reconstructions, as assessed by the coefficient of determination between observed and predicted environmental values (r(2)) and root mean square error of prediction (RMSEP). Mt(co) and Mt(wa) may be reconstructed too, but with caution. Samples from different depositional environments influence the performance of cross-validation differently, with samples from lake sediment-surfaces and moss polsters having the best fit with the lowest RMSEP. The better model performances of MAT are most probably caused by spatial autocorrelation. Accordingly, the WA-PLS models of this dataset are deemed most suitable for reconstructing past climate quantitatively because of their more reliable predictive power. (C) 2014 Elsevier B.V. All rights reserved. KW - Calibration KW - Huisman-Olff-Fresco models KW - MAT KW - Pollen-climate transfer function KW - Spatial autocorrelation KW - WA-PLS Y1 - 2014 U6 - https://doi.org/10.1016/j.revpalbo.2014.08.007 SN - 0034-6667 SN - 1879-0615 VL - 211 SP - 87 EP - 96 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Telford, Richard J. A1 - Ni, Jian A1 - Xu, Qinghai A1 - Chen, Fahu A1 - Liu, Xingqi A1 - Stebich, Martina A1 - Zhao, Yan A1 - Herzschuh, Ulrike T1 - Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (P-ann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7 degrees N, 100.5 degrees E; north-east Tibetan Plateau), Gonghai Lake (38.9 degrees N, 112.2 degrees E; north China) and Sihailongwan Lake (42.3 degrees N, 126.6 degrees E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to radii between ca. 1000 and 1500 km because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. (C) 2017 Elsevier Ltd. All rights reserved. KW - Analogue quality KW - Statistical significance KW - Cross-validation KW - Holocene KW - Climate reconstruction KW - WA-PLS KW - MAT Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.10.030 SN - 0277-3791 VL - 178 SP - 37 EP - 53 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Klemm, Juliane A1 - Herzschuh, Ulrike A1 - Pisaric, Michael F. J. A1 - Telford, Richard J. A1 - Heim, Birgit A1 - Pestryakova, Luidmila Agafyevna T1 - A pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - This study aims to establish, evaluate, and apply a modern pollen-climate transfer function from the transition zone between arctic tundra and light-needled taiga in Arctic Siberia. Lacustrine samples (n = 96) from the northern Siberian lowlands of Yakutia were collected along four north-to-south transects crossing the arctic forest line. Samples span a broad temperature and precipitation gradient (mean July temperature, T-July: 7.5-18.7 degrees C; mean annual precipitation, P-ann: 114-315 mm/yr). Redundancy analyses are used to examine the relationship between the modern pollen signal and corresponding vegetation types and climate. Performance of transfer functions for T-July and P-ann were cross-validated and tested for spatial autocorrelation effects. The root mean square errors of prediction are 1.67 degrees C for T-July and 40 mm/yr for P-ann. A climate reconstruction based on fossil pollen spectra from a Siberian Arctic lake sediment core spanning the Holocene yielded cold conditions for the Late Glacial (1-2 degrees C below present T-July). Warm and moist conditions were reconstructed for the early to mid Holocene (2 degrees C higher T-July than present), and climate conditions similar to modern ones were reconstructed for the last 4000 years. In conclusion, our modern pollen data set fills the gap of existing regional calibration sets with regard to the underrepresented Siberian tundra-taiga transition zone. The Holocene climate reconstruction indicates that the temperature deviation from modern values was only moderate despite the assumed Arctic sensitivity to present climate change. KW - Mean July temperature KW - Reconstruction KW - Weighted-average partial least squares KW - Autocorrelation KW - Yakutia Y1 - 2013 U6 - https://doi.org/10.1016/j.palaeo.2013.06.033 SN - 0031-0182 SN - 1872-616X VL - 386 SP - 702 EP - 713 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Böhmer, Thomas A1 - Li, Chenzhi A1 - Cao, Xianyong A1 - Hébert, Raphaël A1 - Dallmeyer, Anne A1 - Telford, Richard J. A1 - Kruse, Stefan T1 - Reversals in temperature-precipitation correlations in the Northern Hemisphere extratropics during the Holocene JF - Geophysical research letters N2 - Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging. Y1 - 2022 U6 - https://doi.org/10.1029/2022GL099730 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 22 PB - American Geophysical Union CY - Washington ER -