TY - JOUR A1 - Sobel, Edward A1 - Schoenbohm, Lindsay M. A1 - Chen, Jie A1 - Thiede, Rasmus Christoph A1 - Stockli, Daniel F. A1 - Sudo, Masafumi A1 - Strecker, Manfred T1 - Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis JF - EARTH AND PLANETARY SCIENCE LETTERS N2 - The timing of the late Cenozoic collision between the Pamir salient and the Tien Shan as well as changes in the relative motion between the Pamir and Tarim are poorly constrained. The northern margin of the Pamir salient indented northward by similar to 300 km during the late Cenozoic, accommodated by south-dipping intracontinental subduction along the Main Pamir Thrust (MPT) coupled to strike-slip faults on the eastern flank of the orogen and both strike-slip and thrust faults on the western margin. The Kashgar-Yecheng transfer system (KYTS) is the main dextral slip shear zone separating Tarim from the Eastern Pamir, with an estimated cumulative offset of similar to 280 km at an average late Cenozoic dextral slip rate of 11-15 mm/a (Cowgill, 2010). In order to better constrain the slip history of the KYTS, we collected thermochronologic samples along the eastward-flowing, deeply incised, antecedent Tashkorgan-Yarkand River, which crosses the fault system on the eastern flank of the orogen. We present 29 new biotite (40)Ar/(39)Ar ages, apatite and zircon (U-Th-Sm)/He ages, and apatite fission track (AFT) analysis, combined with published muscovite and biotite (40)Ar/(39)Ar and AFT data, to create a unique thermochronologic dataset in this poorly studied and remote region. We constrain the timing of four major N-trending faults: the latter three are strands of the KYTS. The westernmost, the Kuke fault, experienced significant dip-slip, west-side-up displacement between > 12 and 6 Ma. To the east, within the KYTS, our new thermochronologic data and geomorphic observations suggest that the Kumtag and Kusilaf dextral slip faults have been inactive since at least 3-5 Ma. Long-term incision rates across the Aertashi dextral slip fault, the easternmost strand of the KYTS, are compatible with slow horizontal slip rates of 1.7-5.3 mm/a over the past 3 to 5 Ma. In summary, these data show that the slip rate of the KYTS decreased substantially during the late Miocene or Pliocene. Furthermore, Miocene-present regional kinematic reconstructions suggest that this deceleration reflects the substantial increase of northward motion of Tarim rather than a significant decrease of the northward velocity of the Pamir. (C) 2011 Elsevier B.V. All rights reserved. KW - thermochronology KW - neotectonics KW - Pamir KW - Tien Shan KW - strike-slip fault KW - intracontinental subduction Y1 - 2011 U6 - https://doi.org/10.1016/j.epsl.2011.02.012 SN - 0012-821X VL - 304 IS - 3-4 SP - 369 EP - 378 PB - ELSEVIER SCIENCE BV CY - AMSTERDAM ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Sobel, Edward A1 - Chen, Jie A1 - Schoenbohm, Lindsay M. A1 - Stockli, Daniel F. A1 - Sudo, Masafumi A1 - Strecker, Manfred T1 - Late Cenozoic extension and crustal doming in the India-Eurasia collision zone new thermochronologic constraints from the NE Chinese Pamir JF - Tectonics N2 - The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip faulting, and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719m) and Muztagh Ata (7546m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan extensional fault system (KES), a 250 km long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission track, zircon U-Th-Sm/He, and Ar-40/Ar-39 cooling ages from a series of footwall transects along the KES graben shoulder. Combining these data with present-day topographic relief, 1-D thermokinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While the exhumation of the Kongur Shan commenced during the late Miocene, extensional processes in the Muztagh Ata massif began earlier and have slowed down since the late Miocene. We present a new model of synorogenic extension suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localize extensional upper plate deformation along the KES and decouple crustal motion between the central/western Pamir and eastern Pamir/Tarim basin. KW - Pamir KW - gneiss domes KW - collision KW - extension KW - thermochronology KW - exhumation Y1 - 2013 U6 - https://doi.org/10.1002/tect.20050 SN - 0278-7407 VL - 32 IS - 3 SP - 763 EP - 779 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Sobel, Edward A1 - Chen, Jie A1 - Schoenbohm, Lindsay M. A1 - Thiede, Rasmus Christoph A1 - Stockli, Daniel F. A1 - Sudo, Masafumi A1 - Strecker, Manfred T1 - Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen JF - Earth & planetary science letters N2 - The northern part of the Pamir orogen is the preeminent example of an active intracontinental subduction zone in the early stages of continent-continent collision. Such zones are the least understood type of plate boundaries because modern examples are few and of limited access, and ancient analogs have been extensively overprinted by subsequent tectonic and erosion processes. In the Pamir, it has been assumed that most of the plate convergence was accommodated by overthrusting along the plate-bounding Main Pamir Thrust (MPT), which forms the principal northern mountain and deformation front of the Pamir. However, the synopsis of our new and previously published thermochronologic data from this region shows that the hanging wall of the MPT experienced relatively minor amounts of late Cenozoic exhumation. The Pamir orogen as a whole is an integral part of the overriding plate in a subduction system, while the remnant basin to the north constitutes the downgoing plate, with the bulk of the convergence accommodated by underthrusting. Herein, we demonstrate that the observed deformation of the upper and lower plates within the Pamir-Alai convergence zone resembles highly arcuate oceanic subduction systems characterized by slab rollback, subduction erosion, subduction accretion, and marginal slab-tear faults. We suggest that the curvature of the North Pamir is genetically linked to the short width and rollback of the south-dipping Alai slab; northward motion (indentation) of the Pamir is accommodated by crustal processes related to this rollback. The onset of south-dipping subduction is tentatively linked to intense Pamir contraction following break-off of the north-dipping Indian slab beneath the Karakoram. KW - subduction accretion KW - subduction erosion KW - exhumation KW - thermochronology KW - intracontinental deformation KW - Pamir Y1 - 2013 U6 - https://doi.org/10.1016/j.epsl.2012.12.009 SN - 0012-821X VL - 363 IS - 1 SP - 204 EP - 218 PB - Elsevier CY - Amsterdam ER -