TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Lühr, Hermann T1 - The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities JF - Space Weather: The International Journal of Research and Applications N2 - In this study we investigated conditions for loss of GPS signals observed by the Swarm satellites during a 2 year period, from December 2013 to November 2015. Our result shows that the Swarm satellites encountered most of the total loss of GPS signal at the ionization anomaly crests, between +/- 5 degrees and +/- 20 degrees magnetic latitude, forming two bands along the magnetic equator, and these low-latitude events mainly appear around postsunset hours from 19: 00 to 22: 00 local time. By further checking the in situ electron density measurements of Swarm, we found that practically, all the total loss of GPS signal events at low latitudes are related to equatorial plasma irregularities (EPIs) that show absolute density depletions larger than 10 x 10(11) m(-3); then, the Swarm satellites encountered for up to 95% loss of GPS signal for at least one channel and up to 45% tracked less than four GPS satellites (making precise orbit determination impossible). For those EPIs with density depletions less than 10 x 10(11) m(-3), the chance of tracked GPS signals less than four reduces to only 1.0%. Swarm also observed total loss of all GPS signal at high latitudes, mainly around local noon, and these events are related to large spatial density gradients due to polar patches or increased geomagnetic/auroral activities. We further found that the loss of GPS signals were less frequent after appropriate settings of the Swarm GPS receivers had been updated. However, the more recent period of the mission, e.g., after the GPS receiver settings have been updated, also coincides with less severe electron density depletions due to the declining solar cycle, making GPS loss events less likely. We conclude that both lower electron density gradients and appropriate GPS receiver settings reduce the probability for Swarm satellites loss of GPS signals. Y1 - 2016 U6 - https://doi.org/10.1002/2016SW001439 SN - 1542-7390 VL - 14 SP - 563 EP - 577 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Stolle, Claudia A1 - Michaelis, Ingo A1 - Rauberg, Jan T1 - The role of high‐resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10–15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 887 KW - geomagnetic field KW - ionospheric current KW - geomagnetic models Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435500 SN - 1866-8372 IS - 887 ER - TY - JOUR A1 - Stolle, Claudia A1 - Michaelis, Ingo A1 - Rauberg, Jan T1 - The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites JF - Earth, planets and space N2 - Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10-15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ. KW - Geomagnetic field KW - Ionospheric current KW - Geomagnetic models Y1 - 2016 U6 - https://doi.org/10.1186/s40623-016-0494-1 SN - 1880-5981 VL - 68 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Matzka, Jürgen A1 - Stolle, Claudia A1 - Yamazaki, Yosuke A1 - Bronkalla, Oliver A1 - Morschhauser, Achim T1 - The geomagnetic Kp index and derived indices of geomagnetic activity JF - Space weather : the international journal of research and applications N2 - The geomagnetic Kp index is one of the most extensively used indices of geomagnetic activity, both for scientific and operational purposes. This article reviews the properties of the Kp index and provides a reference for users of the Kp index and associated data products as derived and distributed by the GFZ German Research Centre for Geosciences. The near real-time production of the nowcast Kp index is of particular interest for space weather services and here we describe and evaluate its current setup. Y1 - 2021 U6 - https://doi.org/10.1029/2020SW002641 SN - 1542-7390 VL - 19 IS - 5 PB - Wiley CY - New York ER - TY - JOUR A1 - Zhelayskaya, Irina S. A1 - Vasile, Ruggero A1 - Shprits, Yuri Y. A1 - Stolle, Claudia A1 - Matzka, Jürgen T1 - Systematic Analysis of Machine Learning and Feature Selection Techniques for Prediction of the Kp Index JF - Space Weather: The International Journal of Research and Applications N2 - The Kp index is a measure of the midlatitude global geomagnetic activity and represents short-term magnetic variations driven by solar wind plasma and interplanetary magnetic field. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere and the radiation belts. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast Kp, based their inferences on the recent history of Kp and on solar wind measurements at L1. In this study, we systematically test how different machine learning techniques perform on the task of nowcasting and forecasting Kp for prediction horizons of up to 12 hr. Additionally, we investigate different methods of machine learning and information theory for selecting the optimal inputs to a predictive model. We illustrate how these methods can be applied to select the most important inputs to a predictive model of Kp and to significantly reduce input dimensionality. We compare our best performing models based on a reduced set of optimal inputs with the existing models of Kp, using different test intervals, and show how this selection can affect model performance. KW - Kp index KW - Predictive models KW - Feature selection KW - Machine learning KW - Validation Y1 - 2019 U6 - https://doi.org/10.1029/2019SW002271 SN - 1542-7390 VL - 17 IS - 10 SP - 1461 EP - 1486 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Park, Jaeheung A1 - Lühr, Hermann A1 - Stolle, Claudia A1 - Rodriguez-Zuluaga, Juan A1 - Knudsen, David J. A1 - Burchill, Johnathan K. A1 - Kwak, Young-Sil T1 - Statistical survey of nighttime midlatitude magnetic fluctuations: Their source location and Poynting flux as derived from the Swarm constellation JF - Journal of geophysical research : Space physics N2 - This is the first statistical survey of field fluctuations related with medium-scale traveling ionospheric disturbances (MSTIDs), which considers magnetic field, electric field, and plasma density variations at the same time. Midlatitude electric fluctuations (MEFs) and midlatitude magnetic fluctuations (MMFs) observed in the nighttime topside ionosphere have generally been attributed to MSTIDs. Although the topic has been studied for several decades, statistical studies of the Poynting flux related with MEF/MMF/MSTID have not yet been conducted. In this study we make use of electric/magnetic field and plasma density observations by the European Space Agency's Swarm constellation to address the statistical behavior of the Poynting flux. We have found that (1) the Poynting flux is directed mainly from the summer to winter hemisphere, (2) its magnitude is larger before midnight than thereafter, and (3) the magnitude is not well correlated with fluctuation level of in situ plasma density. These results are discussed in the context of previous studies. Y1 - 2016 U6 - https://doi.org/10.1002/2016JA023408 SN - 2169-9380 SN - 2169-9402 VL - 121 SP - 11235 EP - 11248 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Yamazaki, Yosuke A1 - Wendt, Vivien A1 - Miyoshi, Y. A1 - Stolle, Claudia A1 - Siddiqui, Tarique Adnan A1 - Kervalishvili, Guram N. A1 - Laštovička, J. A1 - Kozubek, M. A1 - Ward, W. A1 - Themens, D. R. A1 - Kristoffersen, S. A1 - Alken, Patrick T1 - September 2019 Antarctic sudden stratospheric warming BT - Quasi-6-Day wave burst and ionospheric effects T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from European Space Agency's Swarm satellite constellation mission show prominent 6-day variations in the dayside low-latitude region at this time, which can be attributed to forcing from the middle atmosphere by the Rossby normal mode "quasi-6-day wave" (Q6DW). Geopotential height measurements by the Microwave Limb Sounder aboard National Aeronautics and Space Administration's Aura satellite reveal a burst of global Q6DW activity in the mesosphere and lower thermosphere during the SSW, which is one of the strongest in the record. The Q6DW is apparently generated in the polar stratosphere at 30-40 km, where the atmosphere is unstable due to strong vertical wind shear connected with planetary wave breaking. These results suggest that an Antarctic SSW can lead to ionospheric variability through wave forcing from the middle atmosphere. Plain Language Summary: A sudden stratospheric warming (SSW) is an extreme wintertime polar meteorological phenomenon occurring mostly over the Arctic region. Studies have shown that Arctic SSW can influence the entire atmosphere. In September 2019, a rare SSW event occurred in the Antarctic region, providing an opportunity to investigate its broader impact on the whole atmosphere. We present observations from the middle atmosphere and ionosphere during this event, noting unusually strong wave activity throughout this region. Our results suggest that an Antarctic SSW can have a significant impact on the whole atmosphere system similar to those due to Arctic events. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1394 KW - Rossby-normal modes KW - nonumiform background configuration KW - total electron-content KW - large-scale KW - planetary-waves KW - 5-day waves KW - equatorial electrojet KW - lower thermosphere KW - symmetric modes KW - 6.5-Day wave Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515814 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Yamazaki, Yosuke A1 - Wendt, Vivien A1 - Miyoshi, Y. A1 - Stolle, Claudia A1 - Siddiqui, Tarique Adnan A1 - Kervalishvili, Guram N. A1 - Laštovička, J. A1 - Kozubek, M. A1 - Ward, W. A1 - Themens, D. R. A1 - Kristoffersen, S. A1 - Alken, Patrick T1 - September 2019 Antarctic sudden stratospheric warming BT - Quasi-6-Day wave burst and ionospheric effects JF - Geophysical Research Letters N2 - An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from European Space Agency's Swarm satellite constellation mission show prominent 6-day variations in the dayside low-latitude region at this time, which can be attributed to forcing from the middle atmosphere by the Rossby normal mode "quasi-6-day wave" (Q6DW). Geopotential height measurements by the Microwave Limb Sounder aboard National Aeronautics and Space Administration's Aura satellite reveal a burst of global Q6DW activity in the mesosphere and lower thermosphere during the SSW, which is one of the strongest in the record. The Q6DW is apparently generated in the polar stratosphere at 30-40 km, where the atmosphere is unstable due to strong vertical wind shear connected with planetary wave breaking. These results suggest that an Antarctic SSW can lead to ionospheric variability through wave forcing from the middle atmosphere. Plain Language Summary: A sudden stratospheric warming (SSW) is an extreme wintertime polar meteorological phenomenon occurring mostly over the Arctic region. Studies have shown that Arctic SSW can influence the entire atmosphere. In September 2019, a rare SSW event occurred in the Antarctic region, providing an opportunity to investigate its broader impact on the whole atmosphere. We present observations from the middle atmosphere and ionosphere during this event, noting unusually strong wave activity throughout this region. Our results suggest that an Antarctic SSW can have a significant impact on the whole atmosphere system similar to those due to Arctic events. KW - Rossby-normal modes KW - nonumiform background configuration KW - total electron-content KW - large-scale KW - planetary-waves KW - 5-day waves KW - equatorial electrojet KW - lower thermosphere KW - symmetric modes KW - 6.5-Day wave Y1 - 2020 U6 - https://doi.org/10.1029/2019GL086577 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 1 SP - 1 EP - 12 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Lühr, Hermann A1 - Park, Jaeheung A1 - Fejer, Bela G. A1 - Kervalishvili, Guram N. T1 - Scale analysis of equatorial plasma irregularities derived from Swarm constellation T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1112 KW - Equatorial plasma irregularities KW - ionospheric scale lengths KW - Swarm constellation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431842 SN - 1866-8372 IS - 1112 ER - TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Luehr, Hermann A1 - Park, Jaeheung A1 - Fejer, Bela G. A1 - Kervalishvili, Guram N. T1 - Scale analysis of equatorial plasma irregularities derived from Swarm constellation JF - Earth, planets and space N2 - In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4 degrees, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT). KW - Equatorial plasma irregularities KW - Ionospheric scale lengths KW - Swarm constellation Y1 - 2016 U6 - https://doi.org/10.1186/s40623-016-0502-5 SN - 1880-5981 VL - 68 SP - 189 EP - 202 PB - Springer CY - Heidelberg ER -