TY - JOUR A1 - Seiß, Martin A1 - Albers, Nicole A1 - Sremčević, Miodrag A1 - Schmidt, Jürgen A1 - Salo, Heikki A1 - Seiler, Michael A1 - Hoffmann, Holger A1 - Spahn, Frank T1 - Hydrodynamic Simulations of Moonlet-induced Propellers in Saturn's Rings BT - Application to Bleriot JF - The astronomical journal N2 - One of the biggest successes of the Cassini mission is the detection of small moons (moonlets) embedded in Saturns rings that cause S-shaped density structures in their close vicinity, called propellers. Here, we present isothermal hydrodynamic simulations of moonlet-induced propellers in Saturn's A ring that denote a further development of the original model. We find excellent agreement between these new hydrodynamic and corresponding N-body simulations. Furthermore, the hydrodynamic simulations confirm the predicted scaling laws and the analytical solution for the density in the propeller gaps. Finally, this mean field approach allows us to simulate the pattern of the giant propeller Blériot, which is too large to be modeled by direct N-body simulations. Our results are compared to two stellar occultation observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS), which intersect the propeller Blériot. Best fits to the UVIS optical depth profiles are achieved for a Hill radius of 590 m, which implies a moonlet diameter of about 860 m. Furthermore, the model favors a kinematic shear viscosity of the surrounding ring material of ν0 = 340 cm2 s−1, a dispersion velocity in the range of 0.3 cm s−1 < c0 < 1.5 cm s−1, and a fairly high bulk viscosity 7 < ξ0/ν0 < 17. These large transport values might be overestimated by our isothermal ring model and should be reviewed by an extended model including thermal fluctuations. KW - diffusion KW - hydrodynamics KW - planets and satellites: rings Y1 - 2018 U6 - https://doi.org/10.3847/1538-3881/aaed44 SN - 0004-6256 SN - 1538-3881 VL - 157 IS - 1 PB - IOP Publishing Ltd. CY - Bristol ER - TY - JOUR A1 - Makuch, Martin A1 - Brilliantov, Nikolai V. A1 - Sremcevic, Miodrag A1 - Spahn, Frank A1 - Krivov, Alexander V. T1 - Stochastic circumplanetary dynamics of rotating non-spherical dust particles JF - Planetary and space science N2 - We develop a model of stochastic radiation pressure for rotating non-spherical particles and apply the model to circumplanetary dynamics of dust grains. The stochastic properties of the radiation pressure are related to the ensemble-averaged characteristics of the rotating particles, which are given in terms of the rotational time-correlation function of a grain. We investigate the model analytically and show that an ensemble of particle trajectories demonstrates a diffusion-like behaviour. The analytical results are compared with numerical simulations, performed for the motion of the dusty ejecta from Deimos in orbit around Mars. We find that the theoretical predictions are in a good agreement with the simulation results. The agreement however deteriorates at later time, when the impact of non-linear terms, neglected in the analytic approach, becomes significant. Our results indicate that the stochastic modulation of the radiation pressure can play an important role in the circumplanetary dynamics of dust and may in case of some dusty systems noticeably alter an optical depth. (c) 2006 Elsevier Ltd. All rights reserved. KW - Mars KW - Deimos KW - ejecta KW - stochastics KW - radiation pressure Y1 - 2006 U6 - https://doi.org/10.1016/j.pss.2006.05.006 SN - 0032-0633 VL - 54 IS - 9-10 SP - 855 EP - 870 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Krivov, Alexander V. A1 - Sremcevic, Miodrag A1 - Spahn, Frank T1 - Evolution of a Keplerian disk of colliding and fragmenting particles: a kinetic model with application to the Edgeworth-Kuiper belt N2 - We present a kinetic model of a disk of solid particles, orbiting a primary and experiencing inelastic collisions. In distinction to other collisional models that use a 2D (mass-sernimajor axis) binning and perform a separate analysis of the velocity (eccentricity, inclination) evolution, we choose mass and orbital elements as independent variables of a phase space. The distribution function in this space contains full information on the combined mass, spatial, and velocity distributions of particles. A general kinetic equation for the distribution function is derived, valid for any set of orbital elements and for any collisional outcome, specified by a single kernel function. The first implementation of the model utilizes a 3D phase space (mass-semimajor axis-eccentricity) and involves averages over the inclination and all angular elements. We assume collisions to be destructive, simulate them with available material- and size-dependent scaling laws, and include collisional damping. A closed set of kinetic equations for a mass-semimajor axis-eccentricity distribution is written and transformation rules to usual mass and spatial distributions of the disk material are obtained. The kinetic "core" of our approach is generic. It is possible to add inclination as an additional phase space variable, to include cratering collisions and agglomeration, dynamical friction and viscous stirring, gravity of large perturbers, drag forces, and other effects into the model. As a specific application, we address the collisional evolution of the classical population in the Edgeworth-Kuiper belt (EKB). We run the model for different initial disk's masses and radial profiles and different impact strengths of objects. Our results for the size distribution, collisional timescales, and mass loss are in agreement with previous studies. In particular, collisional evolution is found to be most substantial in the inner part of the EKB, where the separation size between the survivors over EKB ' s age and fragments of earlier collisions lies between a few and several tens of km. The size distribution in the EKB is not a single Dohnanyi-type power law, reflecting the size dependence of the critical specific energy in both strength and gravity regimes. The net mass loss rate of an evolved disk is nearly constant and is dominated by disruption of larger objects. Finally, assuming an initially uniform distribution of orbital eccentricities, we show that an evolved disk contains more objects in orbits with intermediate eccentricities than in nearly circular or more eccentric orbits. This property holds for objects of any size and is explained in terms of collisional probabilities. The effect should modulate the eccentricity distribution shaped by dynamical mechanisms, such as resonances and truncation of perihelia by Neptune. (c) 2004 Elsevier Inc. All rights reserved Y1 - 2005 SN - 0019-1035 ER - TY - JOUR A1 - Sremcevic, Miodrag A1 - Krivov, Alexander V. A1 - Krüger, Harald A1 - Spahn, Frank T1 - Impact-generated dust clouds around planetary satellites : model versus Galileo N2 - This paper focuses on tenuous dust clouds of Jupiter's Galilean moons Europa, Ganymede and Callisto. In a companion paper (Sremcevic et al., Planet. Space Sci. 51 (2003) 455-471) an analytical model of impact-generated ejecta dust clouds surrounding planetary satellites has been developed. The main aim of the model is to predict the asymmetries in the dust clouds which may arise from the orbital motion of the parent body through a field of impactors. The Galileo dust detector data from flybys at Europa, Ganymede and Callisto are compatible with the model, assuming projectiles to be interplanetary micrometeoroids. The analysis of the data suggests that two interplanetary impactor populations are most likely the source of the measured dust clouds: impactors with isotropically distributed velocities and micrometeoroids in retrograde orbits. Other impactor populations, namely those originating in the Jovian system, or interplanetary projectiles with low orbital eccentricities and inclinations, or interstellar stream particles, can be ruled out by the statistical analysis of the data. The data analysis also suggests that the mean ejecta velocity angle to the normal at the satellite surface is around 30°, which is in agreement with laboratory studies of the hypervelocity impacts. © 2004 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0032-0633 ER - TY - JOUR A1 - Spahn, Frank A1 - Schmidt, Jürgen A1 - Albers, Nicole A1 - Hörning, Marcel A1 - Makuch, Martin A1 - Seiß, Martin A1 - Kempf, Sascha A1 - Srama, Ralf A1 - Dikarev, Valeri A1 - Helfert, Stefan A1 - Moragas-Klostermeyer, Georg A1 - Krivov, Alexander V. A1 - Sremcevic, Miodrag A1 - Tuzzolino, Anthony J. A1 - Economou, Thanasis A1 - Grün, Eberhard T1 - Cassini dust measurements at Enceladus and implications for the origin of the E ring Y1 - 2006 UR - http://www.sciencemag.org/content/311/5766/1416.full U6 - https://doi.org/10.1126/science.1121375 ER - TY - JOUR A1 - Seiss, Martin A1 - Spahn, Frank A1 - Sremcevic, Miodrag A1 - Salo, H. T1 - Structures induced by small moonlets in Saturn's rings : implications for the Cassini Mission N2 - Particle simulations are carried out to study density features caused by small moonlets embedded in a dense planetary ring. The creation of a "propeller" like structure is found together with adjacent density wakes. Both features are clear indications for the existence of moonlets in the rings. We confirmed that the propeller scales with the Hill-radius in radial direction whereas its azimuthal extent is determined by the ratio between the moonlet-mass and the ring-viscosity. Our findings bear direct implications for the analysis of the Cassini imaging (ISS) and occultation (UVIS) data: (i) for the detection of embedded larger bodies (>30 m) in Saturn's rings, and (ii) for remotely probing transport properties of the rings. The existence of a moonlet population may point to a catastrophic disruption of a parent body as a formation scenario for rings Y1 - 2005 SN - 0094-8276 ER - TY - JOUR A1 - Spahn, Frank A1 - Albers, Nicole A1 - Sremcevic, Miodrag A1 - Thornton, C. T1 - Kinetic description of coagulation and fragmentation in dilute granular particle ensembles N2 - We derive kinetic equations covering coagulation and fragmentation of granular gases including a combined dynamics of the mass spectrum and the velocity distribution. We will focus on coagulation; that can only occur at low impact velocities where attractive forces and dissipation prevent a post-collisional separation. We calculate an impact speed-dependent threshold velocity g(c) for coagulation to occur based on binary collision dynamics of viscoelastic Iranular particles including adhesive forces and determined by the masses, and the material of the colliding particles. Growth processes are immensely slowed down due to g(c) and the resulting restriction in phase space, and do furthermore depend on the ratio of threshold and thermal velocity of a considered particle ensemble. The Smoluchowski equation emerges from the general kinetic approach as a special case Y1 - 2004 SN - 0295-5075 ER - TY - JOUR A1 - Spahn, Frank A1 - Krivov, Alexander V. A1 - Sremcevic, Miodrag A1 - Schwarz, U. A1 - Kurths, Jürgen T1 - Stochastic forces in circumplanetary dust dynamics N2 - Charged dust grains in circumplanetary environments experience, beyond various deterministic forces, also stochastic perturbations caused, by fluctuations of the magnetic field, the charge of the grains, by chaotic rotation of aspherical grains, etc. Here we investigate the dynamics of a dust population in a circular orbit around a planet which is perturbed by a stochastic planetary magnetic field B', modeled by an isotropically Gaussian white noise. The resulting perturbation equations give rise to a modified diffusion of the inclinations i and eccentricities e. The diffusion coefficient is found to be D proportional to w^2 O /n^2 , where the gyrofrequency, the Kepler frequency, and the synodic frequency are denoted by w , O, and n, respectively. This behavior has been checked against numerical simulations. We have chosen dust grains (1 m in radius) ejected from Jupiter's satellite Europa in circular equatorial orbits around Jupiter and integrated numerically their trajectories over their typical lifetimes (100 years). The particles were exposed to a Gaussian fluctuating magnetic field B' with the same statistical properties as in the analytical treatment. These simulations have confirmed the analytical results. The theoretical studies showed the statistical properties of B' to be of decisive importance. To estimate them, we analyzed the magnetic field data obtained by the Galileo spacecraft magnetometer at Jupiter and found almost Gaussian fluctuations of about 5% of the mean field and exponentially decaying correlations. This results in a diffusion of orbital inclinations and eccentricities of the dust grains of about ten percent over the lifetime of the particles. For smaller dusty motes or for close-in particles (e.g., in Jovian gossamer rings) stochastics might well dominate the dynamics. Y1 - 2003 UR - http://www.agu.org/pubs/current/je/ ER - TY - JOUR A1 - Cuzzi, Jeff N. A1 - Burns, Joseph A. A1 - Charnoz, Sébastien A1 - Clark, Roger N. A1 - Colwell, Josh E. A1 - Dones, Luke A1 - Esposito, Larry W. A1 - Filacchione, Gianrico A1 - French, Richard G. A1 - Hedman, Matthew M. A1 - Kempf, Sascha A1 - Marouf, Essam A. A1 - Murray, Carl D. A1 - Nicholson, Phillip D. A1 - Porco, Carolyn C. A1 - Schmidt, Jürgen A1 - Showalter, Mark R. A1 - Spilker, Linda J. A1 - Spitale, Joseph N. A1 - Srama, Ralf A1 - Sremcević, Miodrag A1 - Tiscareno, Matthew Steven A1 - Weiss, John T1 - An evolving view of Saturn's dynamic rings N2 - We review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks. Y1 - 2010 UR - http://www.sciencemag.org/ U6 - https://doi.org/10.1126/science.1179118 SN - 0036-8075 ER - TY - JOUR A1 - Spahn, Frank A1 - Petzschmann, Olaf A1 - Schmidt, Jürgen A1 - Sremcevic, Miodrag A1 - Hertzsch, Jan-Martin T1 - About the viscosity of granular gases : the force-free case versus granular gases under Keplarian differential rotation Y1 - 2001 SN - 3-540-41458-4 ER - TY - JOUR A1 - Spahn, Frank A1 - Sremcevic, Miodrag T1 - Density Patterns induced by small Moonlets in Saturn's Rings? Y1 - 2000 ER - TY - JOUR A1 - Spahn, Frank A1 - Schmidt, Jürgen A1 - Sremcevic, Miodrag T1 - Structures in planetary rings : stability and gravitational scattering Y1 - 2000 SN - 3-540-41074-0 ER - TY - JOUR A1 - Seiler, Martin A1 - Sremcevic, Miodrag A1 - Seiss, Martin A1 - Hoffmann, Holger A1 - Spahn, Frank T1 - A Librational Model for the Propeller Bleriot in the Saturnian Ring System JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters KW - planets and satellites: individual (Saturn) KW - planets and satellites: rings Y1 - 2017 U6 - https://doi.org/10.3847/2041-8213/aa6d73 SN - 2041-8205 SN - 2041-8213 VL - 840 PB - IOP Publ. Ltd. CY - Bristol ER -