TY - GEN A1 - Smith, Taylor A1 - Zotta, Ruxandra-Maria A1 - Boulton, Chris A. A1 - Lenton, Timothy M. A1 - Dorigo, Wouter A1 - Boers, Niklas T1 - Reliability of resilience estimation based on multi-instrument time series T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Many widely used observational data sets are comprised of several overlapping instrument records. While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement process – rather than actual changes in the dynamical properties of the system – is important in this context. In this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on examples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference vegetation index from different satellite sources. We find that time series resulting from mixing signals from sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data in studies of critical transitions and resilience. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1322 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589120 SN - 1866-8372 IS - 1322 SP - 173 EP - 183 ER - TY - JOUR A1 - Smith, Taylor A1 - Zotta, Ruxandra-Maria A1 - Boulton, Chris A. A1 - Lenton, Timothy M. A1 - Dorigo, Wouter A1 - Boers, Niklas T1 - Reliability of resilience estimation based on multi-instrument time series JF - Earth System Dynamics N2 - Many widely used observational data sets are comprised of several overlapping instrument records. While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement process – rather than actual changes in the dynamical properties of the system – is important in this context. In this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on examples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference vegetation index from different satellite sources. We find that time series resulting from mixing signals from sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data in studies of critical transitions and resilience. Y1 - 2023 U6 - https://doi.org/10.5194/esd-14-173-2023 SN - 2190-4987 VL - 14 SP - 173 EP - 183 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Smith, Taylor A1 - Traxl, Dominik A1 - Boers, Niklas T1 - Empirical evidence for recent global shifts in vegetation resilience JF - Nature climate change N2 - The authors demonstrate that a vegetation system's ability to recover from disturbances-its resilience-can be estimated from its natural variability. Global patterns of resilience loss and gains since the early 1990s reveal shifts towards widespread resilience loss since the early 2000s. The character and health of ecosystems worldwide is tightly coupled to changes in Earth's climate. Theory suggests that ecosystem resilience-the ability of ecosystems to resist and recover from external shocks such as droughts and fires-can be inferred from their natural variability. Here, we quantify vegetation resilience globally with complementary metrics based on two independent long-term satellite records. We first empirically confirm that the recovery rates from large perturbations can be closely approximated from internal vegetation variability across vegetation types and climate zones. On the basis of this empirical relationship, we quantify vegetation resilience continuously and globally from 1992 to 2017. Long-term vegetation resilience trends are spatially heterogeneous, with overall increasing resilience in the tropics and decreasing resilience at higher latitudes. Shorter-term trends, however, reveal a marked shift towards a global decline in vegetation resilience since the early 2000s, particularly in the equatorial rainforest belt. Y1 - 2022 U6 - https://doi.org/10.1038/s41558-022-01352-2 SN - 1758-678X SN - 1758-6798 VL - 12 IS - 5 SP - 477 EP - 484 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Smith, Taylor A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Topography and climate in the upper Indus Basin BT - Mapping elevation-snow cover relationships JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The Upper Indus Basin (UIB), which covers a wide range of climatic and topographic settings, provides an ideal venue to explore the relationship between climate and topography. While the distribution of snow and glaciers is spatially and temporally heterogeneous, there exist regions with similar elevation-snow relationships. In this work, we construct elevation-binned snow-cover statistics to analyze 3415 watersheds and 7357 glaciers in the UIB region. We group both glaciers and watersheds using a hierarchical clustering approach and find that (1) watershed clusters mirror large-scale moisture transport patterns and (2) are highly dependent on median watershed elevation. (3) Glacier clusters are spatially heterogeneous and are less strongly controlled by elevation, but rather by local topographic parameters that modify solar insolation. Our clustering approach allows us to clearly define self-similar snow-topographic regions. Eastern watersheds in the UIB show a steep snow cover-elevation relationship whereas watersheds in the central and western UIB have moderately sloped relationships, but cluster in distinct groups. We highlight this snow-cover-topographic transition zone and argue that these watersheds have different hydrologic responses than other regions. Our hierarchical clustering approach provides a potential new framework to use in defining climatic zones in the cyrosphere based on empirical data. KW - Snow-cover KW - Hierarchical clustering KW - Glaciers KW - Upper Indus Basin Y1 - 2021 U6 - https://doi.org/10.1016/j.scitotenv.2021.147363 SN - 0048-9697 SN - 1879-1026 VL - 786 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Smith, Taylor A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Digital elevation models (DEMs) are a gridded representation of the surface of the Earth and typically contain uncertainties due to data collection and processing. Slope and aspect estimates on a DEM contain errors and uncertainties inherited from the representation of a continuous surface as a grid (referred to as truncation error; TE) and from any DEM uncertainty. We analyze in detail the impacts of TE and propagated elevation uncertainty (PEU) on slope and aspect. Using synthetic data as a control, we define functions to quantify both TE and PEU for arbitrary grids. We then develop a quality metric which captures the combined impact of both TE and PEU on the calculation of topographic metrics. Our quality metric allows us to examine the spatial patterns of error and uncertainty in topographic metrics and to compare calculations on DEMs of different sizes and accuracies. Using lidar data with point density of ∼10 pts m−2 covering Santa Cruz Island in southern California, we are able to generate DEMs and uncertainty estimates at several grid resolutions. Slope (aspect) errors on the 1 m dataset are on average 0.3∘ (0.9∘) from TE and 5.5∘ (14.5∘) from PEU. We calculate an optimal DEM resolution for our SCI lidar dataset of 4 m that minimizes the error bounds on topographic metric calculations due to the combined influence of TE and PEU for both slope and aspect calculations over the entire SCI. Average slope (aspect) errors from the 4 m DEM are 0.25∘ (0.75∘) from TE and 5∘ (12.5∘) from PEU. While the smallest grid resolution possible from the high-density SCI lidar is not necessarily optimal for calculating topographic metrics, high point-density data are essential for measuring DEM uncertainty across a range of resolutions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 725 KW - Digital Elevation Model KW - River Incision Model KW - Accuracy Asseessment KW - Landscape Response KW - Error KW - Slope KW - Uncertainties KW - Extraction KW - Expression KW - Patterns Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430165 SN - 1866-8372 IS - 725 SP - 475 EP - 489 ER - TY - JOUR A1 - Smith, Taylor A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset JF - Earth Surface Dynamics N2 - Digital elevation models (DEMs) are a gridded representation of the surface of the Earth and typically contain uncertainties due to data collection and processing. Slope and aspect estimates on a DEM contain errors and uncertainties inherited from the representation of a continuous surface as a grid (referred to as truncation error; TE) and from any DEM uncertainty. We analyze in detail the impacts of TE and propagated elevation uncertainty (PEU) on slope and aspect. Using synthetic data as a control, we define functions to quantify both TE and PEU for arbitrary grids. We then develop a quality metric which captures the combined impact of both TE and PEU on the calculation of topographic metrics. Our quality metric allows us to examine the spatial patterns of error and uncertainty in topographic metrics and to compare calculations on DEMs of different sizes and accuracies. Using lidar data with point density of ∼10 pts m−2 covering Santa Cruz Island in southern California, we are able to generate DEMs and uncertainty estimates at several grid resolutions. Slope (aspect) errors on the 1 m dataset are on average 0.3∘ (0.9∘) from TE and 5.5∘ (14.5∘) from PEU. We calculate an optimal DEM resolution for our SCI lidar dataset of 4 m that minimizes the error bounds on topographic metric calculations due to the combined influence of TE and PEU for both slope and aspect calculations over the entire SCI. Average slope (aspect) errors from the 4 m DEM are 0.25∘ (0.75∘) from TE and 5∘ (12.5∘) from PEU. While the smallest grid resolution possible from the high-density SCI lidar is not necessarily optimal for calculating topographic metrics, high point-density data are essential for measuring DEM uncertainty across a range of resolutions. KW - Digital Elevation Model KW - River Incision Model KW - Accuracy Asseessment KW - Landscape Response KW - Error KW - Slope KW - Uncertainties KW - Extraction KW - Expression KW - Patterns Y1 - 2019 U6 - https://doi.org/10.5194/esurf-7-475-2019 SN - 2196-6311 SN - 2196-632X VL - 7 SP - 475 EP - 489 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Rheinwalt, Aljoscha T1 - identified with an automated snowmelt detection algorithm, 1987-2016 JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - High Mountain Asia (HMA) – encompassing the Tibetan Plateau and surrounding mountain ranges – is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications – such as agriculture, drinking-water generation, and hydropower – rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season – defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3–5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade−1 over the 29-year study period (5–25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002–2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers – such as the Karakoram and Kunlun Shan – see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous. Y1 - 2017 U6 - https://doi.org/10.5194/tc-11-2329-2017 SN - 1994-0416 SN - 1994-0424 VL - 11 SP - 2329 EP - 2343 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Rheinwalt, Aljoscha T1 - Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987-2016 JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - High Mountain Asia (HMA) - encompassing the Tibetan Plateau and surrounding mountain ranges - is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications - such as agriculture, drinking-water generation, and hydropower - rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season - defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3-5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade 1 over the 29-year study period (5-25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002-2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers - such as the Karakoram and Kunlun Shan - see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous. Y1 - 2017 U6 - https://doi.org/10.5194/tc-11-2329-2017 SN - 1994-0416 SN - 1994-0424 VL - 11 SP - 2329 EP - 2343 ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Rheinwalt, Aljoscha T1 - Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987-2016 N2 - High Mountain Asia (HMA) - encompassing the Tibetan Plateau and surrounding mountain ranges - is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications - such as agriculture, drinking-water generation, and hydropower - rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season - defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3-5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade 1 over the 29-year study period (5-25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002-2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers - such as the Karakoram and Kunlun Shan - see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 397 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403911 ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo A1 - Cannon, Forest T1 - Improving semi-automated glacier mapping with a multi-method approach BT - applications in central Asia T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Studies of glaciers generally require precise glacier outlines. Where these are not available, extensive manual digitization in a geographic information system (GIS) must be performed, as current algorithms struggle to delineate glacier areas with debris cover or other irregular spectral profiles. Although several approaches have improved upon spectral band ratio delineation of glacier areas, none have entered wide use due to complexity or computational intensity. In this study, we present and apply a glacier mapping algorithm in Central Asia which delineates both clean glacier ice and debris-covered glacier tongues. The algorithm is built around the unique velocity and topographic characteristics of glaciers and further leverages spectral and spatial relationship data. We found that the algorithm misclassifies between 2 and 10% of glacier areas, as compared to a similar to 750 glacier control data set, and can reliably classify a given Landsat scene in 3-5 min. The algorithm does not completely solve the difficulties inherent in classifying glacier areas from remotely sensed imagery but does represent a significant improvement over purely spectral-based classification schemes, such as the band ratio of Landsat 7 bands three and five or the normalized difference snow index. The main caveats of the algorithm are (1) classification errors at an individual glacier level, (2) reliance on manual intervention to separate connected glacier areas, and (3) dependence on fidelity of the input Landsat data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 510 KW - debris-covered glaciers KW - land ice measurements KW - remote-sensing data KW - thematic mapper KW - glims project KW - aster data KW - inventory KW - area KW - deformation KW - parameters Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408471 SN - 1866-8372 IS - 510 ER -