TY - JOUR A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel KW - Gestational diabetes KW - Metabolomics KW - Phosphatidylcholine acyl-alkyl C 32:1 KW - Proline Y1 - 2018 U6 - https://doi.org/10.1159/000487119 SN - 1015-8987 SN - 1421-9778 VL - 45 IS - 2 SP - 625 EP - 638 PB - Karger CY - Basel ER - TY - CHAP A1 - Chen, Hong A1 - Reichetzeder, Christoph A1 - Föller, Michael A1 - Slowinski, Torsten A1 - Li, Jian A1 - Chen, You-Peng A1 - Lang, Florian A1 - Hocher, Berthold T1 - Maternal vitamin D deficiency and fetal programming T2 - Acta physiologica : official journal of the Federation of European Physiological Societies Y1 - 2015 SN - 1748-1708 SN - 1748-1716 VL - 213 SP - 155 EP - 156 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Reichetzeder, Christoph A1 - Chen, Hong A1 - Foeller, Michael A1 - Slowinski, Torsten A1 - Li, Jian A1 - Chen, You-Peng A1 - Lang, Florian A1 - Hocher, Berthold T1 - Maternal vitamin D deficiency and fetal programming - lessons learned from humans and mice JF - Kidney & blood pressure research : official organ of the Gesellschaft für Nephrologie N2 - Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D-3 (25OHD) during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy. KW - Vitamin D KW - Birth weight KW - Preterm delivery KW - Fetal programming KW - Glucose tolerance KW - Cardiovascular diseases Y1 - 2014 U6 - https://doi.org/10.1159/000355809 SN - 1420-4096 SN - 1423-0143 VL - 39 IS - 4 SP - 315 EP - 329 PB - Karger CY - Basel ER - TY - JOUR A1 - Nair, Anil V. A1 - Hocher, Berthold A1 - Verkaart, Sjoerd A1 - van Zeeland, Femke A1 - Pfab, Thiemo A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Schlingmann, Karl Peter A1 - Schaller, Andre A1 - Gallati, Sabina A1 - Bindels, Rene J. A1 - Konrad, Martin A1 - Hönderop, Joost G. T1 - Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 ((VI)-I-1393, (KE)-E-1584) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6 ((VI)-I-1393) and TRPM6((KE)-E-1584), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T-1391) and TRPM6(S-1583). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6((VI)-I-1393) and TRPM6((KE)-E-1584) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6((VI)-I-1393) and TRPM6((KE)-E-1584) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6. KW - kidney KW - distal convoluted tubule KW - transient receptor potential KW - vesicular trafficking Y1 - 2012 U6 - https://doi.org/10.1073/pnas.1113811109 SN - 0027-8424 VL - 109 IS - 28 SP - 11324 EP - 11329 PB - National Acad. of Sciences CY - Washington ER -