TY - JOUR A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel KW - Gestational diabetes KW - Metabolomics KW - Phosphatidylcholine acyl-alkyl C 32:1 KW - Proline Y1 - 2018 U6 - https://doi.org/10.1159/000487119 SN - 1015-8987 SN - 1421-9778 VL - 45 IS - 2 SP - 625 EP - 638 PB - Karger CY - Basel ER - TY - JOUR A1 - Hocher, Berthold A1 - Oberthür, Dominik A1 - Slowinski, Torsten A1 - Querfeld, Uwe A1 - Schäfer, Franz A1 - Doyon, Anke A1 - Tepel, Martin A1 - Roth, Heinz J. A1 - Grön, Hans J. A1 - Reichetzeder, Christoph A1 - Betzel, Christian A1 - Armbruster, Franz Paul T1 - Modeling of Oxidized PTH (oxPTH) and Non-oxidized PTH (n-oxPTH) Receptor Binding and Relationship of Oxidized to Non-Oxidized PTH in Children with Chronic Renal Failure, Adult Patients on Hemodialysis and Kidney Transplant Recipients JF - Kidney & blood pressure research : official organ of the Gesellschaft für Nephrologie N2 - Background: The biological properties of oxidized and non-oxidized PTH are substantially different. Oxidized PTH (oxPTH) loses its PTH receptor-stimulating properties, whereas non-oxidized PTH (n-oxPTH) is a full agonist of the receptor. This was described in more than 20 well published studies in the 1970(s) and 80(s). However, PTH oxidation has been ignored during the development of PTH assays for clinical use so far. Even the nowadays used third generation assay systems do not consider oxidation of PTH. We recently developed an assay to differentiate between oxPTH and n-oxPTH. In the current study we established normal values for this assay system. Furthermore, we compare the ratio of oxPTH to n-oxPTH in different population with chronic renal failure: 620 children with renal failure stage 2-4 of the 4C study, 342 adult patients on dialysis, and 602 kidney transplant recipients. In addition, we performed modeling of the interaction of either oxPTH or n-oxPTH with the PTH receptor using biophysical structure approaches. Results: The children had the highest mean as well as maximum n-oxPTH concentrations as compared to adult patients (both patients on dialysis as well as kidney transplant recipients). The relationship between oxPTH and n-oxPTH of individual patients varied substantially in all three populations with renal impairment. The analysis of n-oxPTH in 89 healthy control subjects revealed that n-oxPTH concentrations in patient with renal failure were higher as compared to healthy adult controls (2.25-fold in children with renal failure, 1.53-fold in adult patients on dialysis, and 1.56-fold in kidney transplant recipients, respectively). Computer assisted biophysical structure modeling demonstrated, however, minor sterical- and/or electrostatic changes in oxPTH and n-oxPTH. This indicated that PTH oxidation may induce refolding of PTH and hence alters PTH-PTH receptor interaction via oxidation induced three-dimensional structure alteration of PTH. Conclusion: A huge proportion of circulating PTH measured by current state-of-the-art assay systems is oxidized and thus not biologically active. The relationship between oxPTH and n-oxPTH of individual patients varied substantially. Non-oxidized PTH concentrations are 1.5 - 2.25 fold higher in patients with renal failure as compared to health controls. Measurements of n-oxPTH may reflect the hormone status more precise. The iPTH measures describes most likely oxidative stress in patients with renal failure rather than the PTH hormone status. This, however, needs to be demonstrated in further clinical studies. KW - n-oxPTH KW - Chronic Renal Failure KW - Kidney Transplantation KW - Hemodialysis KW - Oxidation KW - PTH KW - Chronic Renal Failure in Children Y1 - 2013 U6 - https://doi.org/10.1159/000350149 SN - 1420-4096 SN - 1423-0143 VL - 37 IS - 4-5 SP - 240 EP - 251 PB - Karger CY - Basel ER - TY - JOUR A1 - Horikoshi, Momoko A1 - Yaghootkar, Hanieh A1 - Mook-Kanamori, Dennis O. A1 - Sovio, Ulla A1 - Taal, H. Rob A1 - Hennig, Branwen J. A1 - Bradfield, Jonathan P. A1 - St Pourcain, Beate A1 - Evans, David M. A1 - Charoen, Pimphen A1 - Kaakinen, Marika A1 - Cousminer, Diana L. A1 - Lehtimaki, Terho A1 - Kreiner-Moller, Eskil A1 - Warrington, Nicole M. A1 - Bustamante, Mariona A1 - Feenstra, Bjarke A1 - Berry, Diane J. A1 - Thiering, Elisabeth A1 - Pfab, Thiemo A1 - Barton, Sheila J. A1 - Shields, Beverley M. A1 - Kerkhof, Marjan A1 - van Leeuwen, Elisabeth M. A1 - Fulford, Anthony J. A1 - Kutalik, Zoltan A1 - Zhao, Jing Hua A1 - den Hoed, Marcel A1 - Mahajan, Anubha A1 - Lindi, Virpi A1 - Goh, Liang-Kee A1 - Hottenga, Jouke-Jan A1 - Wu, Ying A1 - Raitakari, Olli T. A1 - Harder, Marie N. A1 - Meirhaeghe, Aline A1 - Ntalla, Ioanna A1 - Salem, Rany M. A1 - Jameson, Karen A. A1 - Zhou, Kaixin A1 - Monies, Dorota M. A1 - Lagou, Vasiliki A1 - Kirin, Mirna A1 - Heikkinen, Jani A1 - Adair, Linda S. A1 - Alkuraya, Fowzan S. A1 - Al-Odaib, Ali A1 - Amouyel, Philippe A1 - Andersson, Ehm Astrid A1 - Bennett, Amanda J. A1 - Blakemore, Alexandra I. F. A1 - Buxton, Jessica L. A1 - Dallongeville, Jean A1 - Das, Shikta A1 - de Geus, Eco J. C. A1 - Estivill, Xavier A1 - Flexeder, Claudia A1 - Froguel, Philippe A1 - Geller, Frank A1 - Godfrey, Keith M. A1 - Gottrand, Frederic A1 - Groves, Christopher J. A1 - Hansen, Torben A1 - Hirschhorn, Joel N. A1 - Hofman, Albert A1 - Hollegaard, Mads V. A1 - Hougaard, David M. A1 - Hyppoenen, Elina A1 - Inskip, Hazel M. A1 - Isaacs, Aaron A1 - Jorgensen, Torben A1 - Kanaka-Gantenbein, Christina A1 - Kemp, John P. A1 - Kiess, Wieland A1 - Kilpelainen, Tuomas O. A1 - Klopp, Norman A1 - Knight, Bridget A. A1 - Kuzawa, Christopher W. A1 - McMahon, George A1 - Newnham, John P. A1 - Niinikoski, Harri A1 - Oostra, Ben A. A1 - Pedersen, Louise A1 - Postma, Dirkje S. A1 - Ring, Susan M. A1 - Rivadeneira, Fernando A1 - Robertson, Neil R. A1 - Sebert, Sylvain A1 - Simell, Olli A1 - Slowinski, Torsten A1 - Tiesler, Carla M. T. A1 - Toenjes, Anke A1 - Vaag, Allan A1 - Viikari, Jorma S. A1 - Vink, Jacqueline M. A1 - Vissing, Nadja Hawwa A1 - Wareham, Nicholas J. A1 - Willemsen, Gonneke A1 - Witte, Daniel R. A1 - Zhang, Haitao A1 - Zhao, Jianhua A1 - Wilson, James F. A1 - Stumvoll, Michael A1 - Prentice, Andrew M. A1 - Meyer, Brian F. A1 - Pearson, Ewan R. A1 - Boreham, Colin A. G. A1 - Cooper, Cyrus A1 - Gillman, Matthew W. A1 - Dedoussis, George V. A1 - Moreno, Luis A. A1 - Pedersen, Oluf A1 - Saarinen, Maiju A1 - Mohlke, Karen L. A1 - Boomsma, Dorret I. A1 - Saw, Seang-Mei A1 - Lakka, Timo A. A1 - Koerner, Antje A1 - Loos, Ruth J. F. A1 - Ong, Ken K. A1 - Vollenweider, Peter A1 - van Duijn, Cornelia M. A1 - Koppelman, Gerard H. A1 - Hattersley, Andrew T. A1 - Holloway, John W. A1 - Hocher, Berthold A1 - Heinrich, Joachim A1 - Power, Chris A1 - Melbye, Mads A1 - Guxens, Monica A1 - Pennell, Craig E. A1 - Bonnelykke, Klaus A1 - Bisgaard, Hans A1 - Eriksson, Johan G. A1 - Widen, Elisabeth A1 - Hakonarson, Hakon A1 - Uitterlinden, Andre G. A1 - Pouta, Anneli A1 - Lawlor, Debbie A. A1 - Smith, George Davey A1 - Frayling, Timothy M. A1 - McCarthy, Mark I. A1 - Grant, Struan F. A. A1 - Jaddoe, Vincent W. V. A1 - Jarvelin, Marjo-Riitta A1 - Timpson, Nicholas J. A1 - Prokopenko, Inga A1 - Freathy, Rachel M. T1 - New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism JF - Nature genetics N2 - Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood(1). Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits(2). In an expanded genome-wide association metaanalysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism. Y1 - 2013 U6 - https://doi.org/10.1038/ng.2477 SN - 1061-4036 VL - 45 IS - 1 SP - 76 EP - U115 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Reichetzeder, Christoph A1 - Chen, Hong A1 - Foeller, Michael A1 - Slowinski, Torsten A1 - Li, Jian A1 - Chen, You-Peng A1 - Lang, Florian A1 - Hocher, Berthold T1 - Maternal vitamin D deficiency and fetal programming - lessons learned from humans and mice JF - Kidney & blood pressure research : official organ of the Gesellschaft für Nephrologie N2 - Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D-3 (25OHD) during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy. KW - Vitamin D KW - Birth weight KW - Preterm delivery KW - Fetal programming KW - Glucose tolerance KW - Cardiovascular diseases Y1 - 2014 U6 - https://doi.org/10.1159/000355809 SN - 1420-4096 SN - 1423-0143 VL - 39 IS - 4 SP - 315 EP - 329 PB - Karger CY - Basel ER - TY - JOUR A1 - Nair, Anil V. A1 - Hocher, Berthold A1 - Verkaart, Sjoerd A1 - van Zeeland, Femke A1 - Pfab, Thiemo A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Schlingmann, Karl Peter A1 - Schaller, Andre A1 - Gallati, Sabina A1 - Bindels, Rene J. A1 - Konrad, Martin A1 - Hönderop, Joost G. T1 - Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 ((VI)-I-1393, (KE)-E-1584) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6 ((VI)-I-1393) and TRPM6((KE)-E-1584), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T-1391) and TRPM6(S-1583). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6((VI)-I-1393) and TRPM6((KE)-E-1584) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6((VI)-I-1393) and TRPM6((KE)-E-1584) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6. KW - kidney KW - distal convoluted tubule KW - transient receptor potential KW - vesicular trafficking Y1 - 2012 U6 - https://doi.org/10.1073/pnas.1113811109 SN - 0027-8424 VL - 109 IS - 28 SP - 11324 EP - 11329 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Hocher, Berthold A1 - Armbruster, Franz Paul A1 - Stöva, Stanka A1 - Reichetzeder, Christoph A1 - Groen, Hans Jürgen A1 - Lieker, Ina A1 - Khadzhynov, Dmytro A1 - Slowinski, Torsten A1 - Roth, Heinz Jürgen T1 - Measuring Parathyroid Hormone (PTH) in patients with oxidative stress - do we need a fourth generation Parathyroid Hormone assay? JF - PLoS one N2 - Oxidation of PTH at methionine residues results in loss of biological activity. PTH may be oxidized in patients with renal disease. The aim of this study was to develop an assay considering oxidation of PTH. Oxidized hPTH was analyzed by high resolution nano-liquid chromatography coupled to ESI-FTT tandem mass spectrometry (nanoLC-ESI-FT-MS/MS) directly and after proteolytic cleavage. The oxidized hPTH(1-84) sample shows TIC-peaks at 18-20 min and several mass peaks due to mass shifts caused by oxidations. No significant signal for oxidized hPTH(1-84) species after removal of oxidized PTH molecules by a specific column with monoclonal antibodies (MAB) raised against the oxidized hPTH was detectable. By using this column in samples from 18 patients on dialysis we could demonstrate that measured PTH concentrations were substantially lower when considering oxidized forms of PTH. The relationship between PTH concentrations determined directly and those concentrations measured after removal of the oxidized PTH forms varies substantially. In some patients only 7% of traditionally measured PTH was free of oxidation, whereas in other patients 34% of the traditionally measured PTH was real intact PTH. In conclusion, a huge but not constant proportion of PTH molecules are oxidized in patients requiring dialysis. Since oxidized PTH is biologically inactive, the currently used methods to detect PTH in daily clinical practice may not adequately reflect PTH-related bone and cardiovascular abnormalities in patients on dialysis. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0040242 SN - 1932-6203 VL - 7 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Hocher, Berthold A1 - Heimerl, Dirk A1 - Slowinski, Torsten A1 - Godes, Michael A1 - Halle, Horst A1 - Priem, Friedrich A1 - Pfab, Thiemo T1 - Birthweight and Fetal Glycosylated Hemoglobin at Birth in Newborns Carrying the GLUT1 XbaI Gene Polymorphism JF - Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion N2 - Background: Low birthweight is an independent risk factor of glucose intolerance and type 2 diabetes in later life. Genetically determined insulin resistance and subsequently impaired glucose uptake might explain both reduced fetal growth and elevated blood glucose. The glucose transporter 1 (GLUT!) plays an important role for fetal glucose uptake as well as for maternal-fetal glucose transfer, and it has been associated with insulin resistance in adults. The present study hypothesized that the common fetal GLUT1 XbaI polymorphism might reduce fetal insulin sensitivity and/or glucose supply in utero, thus affecting fetal blood glucose and fetal growth. Methods: A genetic association study was conducted at the obstetrics department of the Charite University Hospital, Berlin, Germany. 119.1 white women were included after delivery, and all newborns were genotyped for the GLUT1 XbaI polymorphism. Total glycosylated hemoglobin was quantified, serving as a surrogate of glycemia during the last weeks of pregnancy. Results: The analysis of this large population showed no significant differences in fetal glycosylated hemoglobin or birthweight for the different fetal GLUT1 XbaI genotypes. Only newborns carrying the mutated allele show the previously published inverse association between birthweight and glycosylated hemoglobin. Conclusions: The results suggest that there is no prenatal effect of the fetal GLUT1 XbaI polymorphism on fetal insulin sensitivity, intrauterine fetal glucose supply or fetal growth. However, the polymorphism seems to modulate the inverse interaction between birthweight and fetal glycemia. KW - GLUT1 XbaI gene polymorphism KW - birthweight KW - total glycosylated hemoglobin KW - insulin resistance KW - fetal programming Y1 - 2011 SN - 1433-6510 VL - 57 IS - 9-10 SP - 651 EP - 657 PB - Clin Lab Publ., Verl. Klinisches Labor CY - Heidelberg ER - TY - CHAP A1 - Chen, Hong A1 - Reichetzeder, Christoph A1 - Föller, Michael A1 - Slowinski, Torsten A1 - Li, Jian A1 - Chen, You-Peng A1 - Lang, Florian A1 - Hocher, Berthold T1 - Maternal vitamin D deficiency and fetal programming T2 - Acta physiologica : official journal of the Federation of European Physiological Societies Y1 - 2015 SN - 1748-1708 SN - 1748-1716 VL - 213 SP - 155 EP - 156 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Putra, Sulistyo E. Dwi A1 - Reichetzeder, Christoph A1 - Meixner, Martin A1 - Liere, Karsten A1 - Slowinski, Torsten A1 - Hocher, Berthold T1 - DNA methylation of the glucocorticoid receptor gene promoter in the placenta is associated with blood pressure regulation in human pregnancy JF - Journal of hypertension N2 - Background: Blood pressure (BP) regulation during pregnancy is influenced by hormones of placental origin. It was shown that the glucocorticoid system is altered in hypertensive pregnancy disorders such as preeclampsia. Epigenetic mechanism might influence the activity of genes involved in placental hormone/hormone receptor synthesis/action during pregnancy. Method: In the current study, we analyzed the association of 50-C-phosphate-G-30 (CpG) site methylation of different glucocorticoid receptor gene (NR3C1) promoter regions with BP during pregnancy. The study was performed as a nested case-control study (n = 80) out of 1045 mother/ child pairs from the Berlin Birth Cohort. Placental DNA was extracted and bisulfite converted. Nested PCR products from six NR3C1 proximal promoter regions [glucocorticoid receptor gene promotor region B (GR-1B), C (GR-1C), D (GR-1D), E (GR-1E), F (GR-1F), and H (GR-1H)] were analyzed by next generation sequencing. Results: NR3C1 promoter regions GR-1D and GR-1E had a much higher degree of DNA methylation as compared to GR-1B, GR-1F or GR-1H when analyzing the entire study population. Comparison of placental NR3C1 CpG site methylation among hypotensive, normotensive and hypertensive mothers revealed several differently methylated CpG sites in the GR-1F promoter region only. Both hypertension and hypotension were associated with increased DNA methylation of GR-1F CpG sites. These associations were independent of confounding factors, such as family history of hypertension, smoking status before pregnancy and prepregnancy BMI. Assessment of placental glucocorticoid receptor expression by western blot showed that observed DNA methylation differences were not associated with altered levels of placental glucocorticoid receptor expression. However, correlation matrices of all NR3C1 proximal promoter regions demonstrated different correlation patterns of intraregional and interregional DNA methylation in the three BP groups, putatively indicating altered transcriptional control of glucocorticoid receptor isoforms. Conclusion: Our study provides evidence of an independent association between placental NR3C1 proximal promoter methylation and maternal BP. Furthermore, we observed different patterns of NR3C1 promoter methylation in normotensive, hypertensive and hypotensive pregnancy. KW - DNA methylation KW - epigenetics KW - glucocorticoid receptor KW - hypertension KW - hypotension KW - NR3C1 gene KW - placenta KW - pregnancy Y1 - 2017 U6 - https://doi.org/10.1097/HJH.0000000000001450 SN - 0263-6352 SN - 1473-5598 VL - 35 SP - 2276 EP - 2286 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Dwi Putra, Sulistyo Emantoko A1 - Reichetzeder, Christoph A1 - Hasan, Ahmed Abdallah Abdalrahman Mohamed A1 - Slowinski, Torsten A1 - Chu, Chang A1 - Krämer, Bernhard K. A1 - Kleuser, Burkhard A1 - Hocher, Berthold T1 - Being born large for gestational age is associated with increased global placental DNA methylation JF - Scientific Reports N2 - Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001). KW - fetal origins hypothesis KW - birth weight KW - repetitive elements KW - glucocorticoid receptor KW - nutrient transport KW - growth restriction KW - later health KW - pregnancy KW - genes KW - patterns Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-57725-0 SN - 2045-2322 VL - 10 IS - 1 SP - 1 EP - 10 PB - Springer Nature CY - London ER -