TY - JOUR A1 - Cockburn, Robert A. A1 - Siegmann, Rebekka A1 - Payne, Kevin A. A1 - Beuermann, Sabine A1 - McKenna, Timothy F. L. A1 - Hutchinson, Robin A. T1 - Free Radical Copolymerization Kinetics of gamma-Methyl-alpha-methylene-gamma-butyrolactone (MeMBL) JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - The propagation kinetics and copolymerization behavior of the biorenewable monomer gamma-methyl-alpha-methylene-gamma-butyrolactone (MeMBL) are studied using the Pulsed laser polymerization (PLP)/size exclusion chromatography (SEC) technique. The propagation rate coefficent for MeMBL is 15% higher than that of its structural analogue, methyl methacrylate (MMA), with a similar activation energy of 21.8 kJ . mol(-1). When compared to MMA, MeMBL is preferentially incorporated into copolymers when reacted with styrene (ST), MMA, and n-butyl acrylate (BA); the monomer reactivity ratios fit from bulk MeMBL/ST, MeMBL/MMA, and MeMBL/BA copolymerizations are r(MeMBL) = 0.80 +/- 0.04 and r(ST) = 0.34 +/- 0.04, r(MeMBL), = 3.0 +/- 0.3 and r(MMA) = 0.33 +/- 0.01, and r(MeMBL) = 7.0 +/- 2.0 and r(BA) = 0.16 +/- 0.03, respectively. In all cases, no significant variation with temperature was found between 50 and 90 degrees C. The implicit penultimate unit effect (IPUE) model was found to adequately fit the composition-averaged copolymerization propagation rate coefficient, k(p,cop), for the three systems. Y1 - 2011 U6 - https://doi.org/10.1021/bm200400s SN - 1525-7797 VL - 12 IS - 6 SP - 2319 EP - 2326 PB - American Chemical Society CY - Washington ER -