TY - JOUR A1 - Matzka, Jürgen A1 - Siddiqui, Tarique Adnan A1 - Lilienkamp, Henning A1 - Stolle, Claudia A1 - Veliz, Oscar T1 - Quantifying solar flux and geomagnetic main field influence on the equatorial ionospheric current system at the geomagnetic observatory Huancayo JF - Journal of Atmospheric and Solar-Terrestrial Physics N2 - In order to analyse the sensitivity of the equatorial ionospheric current system, i.e. the solar quiet current system and the equatorial electrojet, to solar cycle variations and to the secular variation of the geomagnetic main field, we have analysed 51 years (1935-1985) of geomagnetic observatory data from Huancayo, Peru. This period is ideal to analyse the influence of the main field strength on the amplitude of the quiet daily variation, since the main field decreases significantly from 1935 to 1985, while the distance of the magnetic equator to the observatory remains stable. To this end, we digitised some 19 years of hourly mean values of the horizontal component (H), which have not been available digitally at the World Data Centres. Then, the sensitivity of the amplitude Ali of the quiet daily variation to both solar cycle variations (in terms of sunspot numbers and solar flux F10.7) and changes of the geomagnetic main field strength (due to secular variation) was determined. We confirm an increase of Delta H for the decreasing main field in this period, as expected from physics based models (Cnossen, 2016), but with a somewhat smaller rate of 4.4% (5.8% considering one standard error) compared with 6.9% predicted by the physics based model. KW - Magnetic field KW - Equatorial ionosphere KW - Geomagnetic secular variation KW - Solar cycle Y1 - 2017 U6 - https://doi.org/10.1016/j.jastp.2017.04.014 SN - 1364-6826 SN - 1879-1824 VL - 163 SP - 120 EP - 125 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Yamazaki, Yosuke A1 - Stolle, Claudia A1 - Matzka, Jürgen A1 - Siddiqui, Tarique Adnan A1 - Luehr, Hermann A1 - Alken, Patrick T1 - Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet JF - Journal of geophysical research : Space physics N2 - The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal- longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (similar to 285 degrees E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (similar to 325 degrees E) during the Northern Hemisphere summer. There are also local amplitude maxima at similar to 55 degrees E and similar to 120 degrees E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides. Y1 - 2017 U6 - https://doi.org/10.1002/2017JA024601 SN - 2169-9380 SN - 2169-9402 VL - 122 SP - 12445 EP - 12463 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Siddiqui, Tarique Adnan A1 - Yamazaki, Yosuke A1 - Stolle, Claudia A1 - Lühr, Hermann A1 - Matzka, Jürgen A1 - Maute, Astrid A1 - Pedatella, Nicholas T1 - Dependence of Lunar Tide of the Equatorial Electrojet on the Wintertime Polar Vortex, Solar Flux, and QBO JF - Geophysical research letters N2 - The lower atmospheric forcing effects on the ionosphere are particularly evident during extreme meteorological events known as sudden stratospheric warmings (SSWs). During SSWs, the polar stratosphere and ionosphere, two distant atmospheric regions, are coupled through the SSW-induced modulation of atmospheric migrating and nonmigrating tides. The changes in the migrating semidiurnal solar and lunar tides are the major source of ionospheric variabilities during SSWs. In this study, we use 55 years of ground-magnetometer observations to investigate the composite characteristics of the lunar tide of the equatorial electrojet (EEJ) during SSWs. These long-term observations allow us to capture the EEJ lunar tidal response to the SSWs in a statistical sense. Further, we examine the influence of solar flux conditions and the phases of quasi-biennial oscillation (QBO) on the lunar tide and find that the QBO phases and solar flux conditions modulate the EEJ lunar tidal response during SSWs in a similar way as they modulate the wintertime Arctic polar vortex. This work provides first evidence of modulation of the EEJ lunar tide due to QBO. Plain Language Summary This study focuses on the vertical coupling between the polar stratosphere and equatorial ionosphere during sudden stratospheric warmings (SSWs). Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric migrating and nonmigrating tides, and these variabilities can be comparable to a moderate geomagnetic storm. Observations and modeling studies have found that the changes in the migrating semidiurnal solar and lunar tides are a major source of ionospheric variabilities during SSWs. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. Long-term ground-magnetometer recordings have been used in this study to estimate the variations induced in EEJ during SSWs due to the lunar semidiurnal tide in a statistical sense. The wintertime Arctic polar vortex and the occurrence of SSWs are modulated by solar flux conditions and the phases of quasi-biennial oscillation. In this work, we find the first evidence of lunar tidal modulation of EEJ due to quasi-biennial oscillation during SSWs. Our findings will be useful in providing improved predictions of ionospheric variations due to SSWs. The aeronomy community will be the most impacted by this paper. KW - lunar tide KW - equatorial electrojet KW - vertical coupling KW - SSW KW - QBO KW - planetary waves Y1 - 2018 U6 - https://doi.org/10.1029/2018GL077510 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 9 SP - 3801 EP - 3810 PB - American Geophysical Union CY - Washington ER -