TY - JOUR A1 - Semmo, Amir A1 - Döllner, Jürgen Roland Friedrich T1 - Interactive image filtering for level-of-abstraction texturing of virtual 3D scenes JF - Computers & graphics : CAG ; an international journal of applications in computer graphics N2 - Texture mapping is a key technology in computer graphics. For the visual design of 3D scenes, in particular, effective texturing depends significantly on how important contents are expressed, e.g., by preserving global salient structures, and how their depiction is cognitively processed by the user in an application context. Edge-preserving image filtering is one key approach to address these concerns. Much research has focused on applying image filters in a post-process stage to generate artistically stylized depictions. However, these approaches generally do not preserve depth cues, which are important for the perception of 3D visualization (e.g., texture gradient). To this end, filtering is required that processes texture data coherently with respect to linear perspective and spatial relationships. In this work, we present an approach for texturing 3D scenes with perspective coherence by arbitrary image filters. We propose decoupled deferred texturing with (1) caching strategies to interactively perform image filtering prior to texture mapping and (2) for each mipmap level separately to enable a progressive level of abstraction, using (3) direct interaction interfaces to parameterize the visualization according to spatial, semantic, and thematic data. We demonstrate the potentials of our method by several applications using touch or natural language inputs to serve the different interests of users in specific information, including illustrative visualization, focus+context visualization, geometric detail removal, and semantic depth of field. The approach supports frame-to-frame coherence, order-independent transparency, multitexturing, and content-based filtering. In addition, it seamlessly integrates into real-time rendering pipelines and is extensible for custom interaction techniques. (C) 2015 Elsevier Ltd. All rights reserved. KW - Image filtering KW - Level of abstraction KW - Texturing KW - Virtual 3D scenes KW - Visualization KW - Interaction Y1 - 2015 U6 - https://doi.org/10.1016/j.cag.2015.02.001 SN - 0097-8493 SN - 1873-7684 VL - 52 SP - 181 EP - 198 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Semmo, Amir A1 - Trapp, Matthias A1 - Jobst, Markus A1 - Döllner, Jürgen Roland Friedrich T1 - Cartography-Oriented Design of 3D Geospatial Information Visualization - Overview and Techniques JF - The cartographic journal N2 - In economy, society and personal life map-based interactive geospatial visualization becomes a natural element of a growing number of applications and systems. The visualization of 3D geospatial information, however, raises the question how to represent the information in an effective way. Considerable research has been done in technology-driven directions in the fields of cartography and computer graphics (e.g., design principles, visualization techniques). Here, non-photorealistic rendering (NPR) represents a promising visualization category - situated between both fields - that offers a large number of degrees for the cartography-oriented visual design of complex 2D and 3D geospatial information for a given application context. Still today, however, specifications and techniques for mapping cartographic design principles to the state-of-the-art rendering pipeline of 3D computer graphics remain to be explored. This paper revisits cartographic design principles for 3D geospatial visualization and introduces an extended 3D semiotic model that complies with the general, interactive visualization pipeline. Based on this model, we propose NPR techniques to interactively synthesize cartographic renditions of basic feature types, such as terrain, water, and buildings. In particular, it includes a novel iconification concept to seamlessly interpolate between photorealistic and cartographic representations of 3D landmarks. Our work concludes with a discussion of open challenges in this field of research, including topics, such as user interaction and evaluation. KW - 3D information visualization KW - 3D semiotic model KW - cartographic design KW - user interaction KW - real-time rendering Y1 - 2015 U6 - https://doi.org/10.1080/00087041.2015.1119462 SN - 0008-7041 SN - 1743-2774 VL - 52 IS - 2 SP - 95 EP - 106 PB - Routledge, Taylor & Francis Group CY - Leeds ER - TY - GEN A1 - Reimann, Max A1 - Klingbeil, Mandy A1 - Pasewaldt, Sebastian A1 - Semmo, Amir A1 - Trapp, Matthias A1 - Döllner, Jürgen Roland Friedrich ED - Sourin, A Sourina T1 - MaeSTrO: A Mobile App for Style Transfer Orchestration using Neural Networks T2 - International Conference on Cyberworlds (CW) N2 - Mobile expressive rendering gained increasing popularity among users seeking casual creativity by image stylization and supports the development of mobile artists as a new user group. In particular, neural style transfer has advanced as a core technology to emulate characteristics of manifold artistic styles. However, when it comes to creative expression, the technology still faces inherent limitations in providing low-level controls for localized image stylization. This work enhances state-of-the-art neural style transfer techniques by a generalized user interface with interactive tools to facilitate a creative and localized editing process. Thereby, we first propose a problem characterization representing trade-offs between visual quality, run-time performance, and user control. We then present MaeSTrO, a mobile app for orchestration of neural style transfer techniques using iterative, multi-style generative and adaptive neural networks that can be locally controlled by on-screen painting metaphors. At this, first user tests indicate different levels of satisfaction for the implemented techniques and interaction design. KW - non-photorealistic rendering KW - style transfer Y1 - 2018 SN - 978-1-5386-7315-7 U6 - https://doi.org/10.1109/CW.2018.00016 SP - 9 EP - 16 PB - IEEE CY - New York ER - TY - JOUR A1 - Semmo, Amir A1 - Hildebrandt, Dieter A1 - Trapp, Matthias A1 - Döllner, Jürgen Roland Friedrich T1 - Concepts for cartography-oriented visualization of virtual 3D city models JF - Photogrammetrie, Fernerkundung, Geoinformation N2 - Virtual 3D city models serve as an effective medium with manifold applications in geoinformation systems and services. To date, most 3D city models are visualized using photorealistic graphics. But an effective communication of geoinformation significantly depends on how important information is designed and cognitively processed in the given application context. One possibility to visually emphasize important information is based on non-photorealistic rendering, which comprehends artistic depiction styles and is characterized by its expressiveness and communication aspects. However, a direct application of non-photorealistic rendering techniques primarily results in monotonic visualization that lacks cartographic design aspects. In this work, we present concepts for cartography-oriented visualization of virtual 3D city models. These are based on coupling non-photorealistic rendering techniques and semantics-based information for a user, context, and media-dependent representation of thematic information. This work highlights challenges for cartography-oriented visualization of 3D geovirtual environments, presents stylization techniques and discusses their applications and ideas for a standardized visualization. In particular, the presented concepts enable a real-time and dynamic visualization of thematic geoinformation. KW - 3D city models KW - cartography-oriented visualization KW - style description languages KW - real-time rendering Y1 - 2012 U6 - https://doi.org/10.1127/1432-8364/2012/0131 SN - 1432-8364 IS - 4 SP - 455 EP - 465 PB - Schweizerbart CY - Stuttgart ER - TY - JOUR A1 - Semmo, Amir A1 - Trapp, Matthias A1 - Kyprianidis, Jan Eric A1 - Döllner, Jürgen Roland Friedrich T1 - Interactive visualization of generalized virtual 3D city models using level-of-abstraction transitions JF - Computer graphics forum : journal of the European Association for Computer Graphics N2 - Virtual 3D city models play an important role in the communication of complex geospatial information in a growing number of applications, such as urban planning, navigation, tourist information, and disaster management. In general, homogeneous graphic styles are used for visualization. For instance, photorealism is suitable for detailed presentations, and non-photorealism or abstract stylization is used to facilitate guidance of a viewer's gaze to prioritized information. However, to adapt visualization to different contexts and contents and to support saliency-guided visualization based on user interaction or dynamically changing thematic information, a combination of different graphic styles is necessary. Design and implementation of such combined graphic styles pose a number of challenges, specifically from the perspective of real-time 3D visualization. In this paper, the authors present a concept and an implementation of a system that enables different presentation styles, their seamless integration within a single view, and parametrized transitions between them, which are defined according to tasks, camera view, and image resolution. The paper outlines potential usage scenarios and application fields together with a performance evaluation of the implementation. Y1 - 2012 U6 - https://doi.org/10.1111/j.1467-8659.2012.03081.x SN - 0167-7055 VL - 31 IS - 3 SP - 885 EP - 894 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Reimann, Max A1 - Klingbeil, Mandy A1 - Pasewaldt, Sebastian A1 - Semmo, Amir A1 - Trapp, Matthias A1 - Döllner, Jürgen Roland Friedrich T1 - Locally controllable neural style transfer on mobile devices JF - The Visual Computer N2 - Mobile expressive rendering gained increasing popularity among users seeking casual creativity by image stylization and supports the development of mobile artists as a new user group. In particular, neural style transfer has advanced as a core technology to emulate characteristics of manifold artistic styles. However, when it comes to creative expression, the technology still faces inherent limitations in providing low-level controls for localized image stylization. In this work, we first propose a problem characterization of interactive style transfer representing a trade-off between visual quality, run-time performance, and user control. We then present MaeSTrO, a mobile app for orchestration of neural style transfer techniques using iterative, multi-style generative and adaptive neural networks that can be locally controlled by on-screen painting metaphors. At this, we enhance state-of-the-art neural style transfer techniques by mask-based loss terms that can be interactively parameterized by a generalized user interface to facilitate a creative and localized editing process. We report on a usability study and an online survey that demonstrate the ability of our app to transfer styles at improved semantic plausibility. KW - Non-photorealistic rendering KW - Style transfer KW - Neural networks KW - Mobile devices KW - Interactive control KW - Expressive rendering Y1 - 2019 U6 - https://doi.org/10.1007/s00371-019-01654-1 SN - 0178-2789 SN - 1432-2315 VL - 35 IS - 11 SP - 1531 EP - 1547 PB - Springer CY - New York ER - TY - JOUR A1 - Semmo, Amir A1 - Limberger, Daniel A1 - Kyprianidis, Jan Eric A1 - Döllner, Jürgen Roland Friedrich T1 - Image stylization by interactive oil paint filtering JF - Ricerche di Storia Politica N2 - This paper presents an interactive system for transforming images into an oil paint look. The system comprises two major stages. First, it derives dominant colors from an input image for feature-aware recolorization and quantization to conform with a global color palette. Afterwards, it employs non-linear filtering based on the smoothed structure adapted to the main feature contours of the quantized image to synthesize a paint texture in real-time. Our filtering approach leads to homogeneous outputs in the color domain and enables creative control over the visual output, such as color adjustments and per-pixel parametrizations by means of interactive painting. To this end, our system introduces a generalized brush-based painting interface that operates within parameter spaces to locally adjust the level of abstraction of the filtering effects. Several results demonstrate the various applications of our filtering approach to different genres of photography. (C) 2015 Elsevier Ltd. All rights reserved. KW - Oil paint filtering KW - Artistic rendering KW - Colorization KW - Image flow KW - Interactive painting Y1 - 2016 U6 - https://doi.org/10.1016/j.cag.2015.12.001 SN - 0097-8493 SN - 1873-7684 VL - 55 SP - 157 EP - 171 PB - Elsevier CY - Oxford ER - TY - THES A1 - Semmo, Amir T1 - Design and implementation of non-photorealistic rendering techniques for 3D geospatial data T1 - Design und Implementierung von nichtfotorealistischen Rendering-Techniken für 3D-Geodaten N2 - Geospatial data has become a natural part of a growing number of information systems and services in the economy, society, and people's personal lives. In particular, virtual 3D city and landscape models constitute valuable information sources within a wide variety of applications such as urban planning, navigation, tourist information, and disaster management. Today, these models are often visualized in detail to provide realistic imagery. However, a photorealistic rendering does not automatically lead to high image quality, with respect to an effective information transfer, which requires important or prioritized information to be interactively highlighted in a context-dependent manner. Approaches in non-photorealistic renderings particularly consider a user's task and camera perspective when attempting optimal expression, recognition, and communication of important or prioritized information. However, the design and implementation of non-photorealistic rendering techniques for 3D geospatial data pose a number of challenges, especially when inherently complex geometry, appearance, and thematic data must be processed interactively. Hence, a promising technical foundation is established by the programmable and parallel computing architecture of graphics processing units. This thesis proposes non-photorealistic rendering techniques that enable both the computation and selection of the abstraction level of 3D geospatial model contents according to user interaction and dynamically changing thematic information. To achieve this goal, the techniques integrate with hardware-accelerated rendering pipelines using shader technologies of graphics processing units for real-time image synthesis. The techniques employ principles of artistic rendering, cartographic generalization, and 3D semiotics—unlike photorealistic rendering—to synthesize illustrative renditions of geospatial feature type entities such as water surfaces, buildings, and infrastructure networks. In addition, this thesis contributes a generic system that enables to integrate different graphic styles—photorealistic and non-photorealistic—and provide their seamless transition according to user tasks, camera view, and image resolution. Evaluations of the proposed techniques have demonstrated their significance to the field of geospatial information visualization including topics such as spatial perception, cognition, and mapping. In addition, the applications in illustrative and focus+context visualization have reflected their potential impact on optimizing the information transfer regarding factors such as cognitive load, integration of non-realistic information, visualization of uncertainty, and visualization on small displays. N2 - Geodaten haben sich zu einem natürlichen Bestandteil in einer steigenden Zahl von Informationssystemen und -diensten in der Wirtschaft, Gesellschaft und im Privatleben entwickelt. Virtuelle 3D-Stadt- und Landschaftsmodelle stellen hierbei insbesondere wertvolle Informationsquellen in einer Vielzahl von Anwendungen dar, wie z. B. in der Stadtplanung, Navigation, Touristeninformation und im Katastrophenschutz. Heutzutage werden diese Modelle oftmals detailliert dargestellt, um ein möglichst realistisches Bild zu vermitteln. Jedoch führt eine fotorealistische Darstellung, hinsichtlich einem effektiven Informationstransfer zum Betrachter, nicht zwangsläufig zu einer hohen Bildqualität, welche eine interaktive und kontextsensitive Hervorhebung von wichtigen oder priorisierten Informationen erfordert. Ansätze in der nichtfotorealistischen Bildsynthese berücksichtigen insbesondere die Aufgabe eines Nutzers und Kameraperspektive, um Aspekte der Expressivität, Wahrnehmung und Kommunikation von wichtigen oder priorisierten Informationen zu optimieren. Das Design und die Umsetzung von Techniken der nichtfotorealistischen Bildsynthese für 3D-Geodaten sind jedoch mit einer Vielzahl von Herausforderungen konfrontiert, besonders dann, wenn die Geometrie, das Erscheinungsbild und thematische Daten interaktiv verarbeitet werden müssen. Infolgedessen stellt die programmierbare Architektur und parallelisierte Datenverarbeitung von Grafik-prozessoren eine vielversprechende technische Grundlage zur Verfügung. Diese Arbeit präsentiert Techniken der nichtfotorealistischen Bildsynthese, die den Abstraktionsgrad von Inhalten raumbezogener 3D-Modelle, entsprechend der Nutzerinteraktion und dynamisch-veränderbaren thematischen Informationen, berechnet und auswählt. Hierzu sind die vorgestellten Techniken in die hardwarebeschleunigte Rendering-Pipeline integriert, unter Verwendung der Shader-Technologie von Grafikprozessoren, um eine Echtzeit-Bildsynthese zu gewährleisten. Dabei werden Prinzipien der künstlerischen Darstellung, Aspekte der kartographischen Generalisierung sowie 3D Semiotik verwendet—im Gegensatz zur fotorealistischen Bildsynthese—um illustrative Darstellungen von raumbezogenen Feature-Typ-Entitäten zu synthetisieren, z. B. von Wasserflächen, Gebäuden und Infrastrukturnetzen. Darüber hinaus stellt diese Arbeit ein generisches System vor, welches die Integration verschiedener Grafikstile—fotorealistisch und nichtfotorealistisch—und ihren nahtlosen Übergang, entsprechend von Nutzeraufgaben, Kameraansichten und Bildauflösungen, ermöglicht. Evaluierungen der in dieser Arbeit vorgestellten Techniken haben ihre Bedeutung im Bereich der Informationsvisualisierung von raumbezogenen Daten aufgezeigt, einschließlich Themengebiete der räumlichen Wahrnehmung, Kognition und Kartierung. Darüber hinaus haben Anwendungen im Bereich der illustrativen Visualisierung und Fokus-&-Kontext Visualisierung den potentiellen Einfluss dieser Techniken, in Bezug auf die Optimierung des Informationstransfers zum Nutzer, demonstriert, z. B. hinsichtlich der kognitiven Last, der Integration nichtrealistischer Informationen, der Visualisierung von Unsicherheiten und der Visualisierung auf kleinen Bildschirmen. KW - non-photorealistic rendering KW - geospatial data KW - 3D visualization KW - GPU KW - image processing KW - stylization KW - 3D semiotics KW - cartographic design KW - Nichtfotorealistische Bildsynthese KW - Geodaten KW - 3D Visualisierung KW - GPU KW - Bildverarbeitung KW - Stilisierung KW - 3D Semiotik KW - Kartografisches Design Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99525 ER - TY - JOUR A1 - Reimann, Max A1 - Buchheim, Benito A1 - Semmo, Amir A1 - Döllner, Jürgen A1 - Trapp, Matthias T1 - Controlling strokes in fast neural style transfer using content transforms JF - The Visual Computer N2 - Fast style transfer methods have recently gained popularity in art-related applications as they make a generalized real-time stylization of images practicable. However, they are mostly limited to one-shot stylizations concerning the interactive adjustment of style elements. In particular, the expressive control over stroke sizes or stroke orientations remains an open challenge. To this end, we propose a novel stroke-adjustable fast style transfer network that enables simultaneous control over the stroke size and intensity, and allows a wider range of expressive editing than current approaches by utilizing the scale-variance of convolutional neural networks. Furthermore, we introduce a network-agnostic approach for style-element editing by applying reversible input transformations that can adjust strokes in the stylized output. At this, stroke orientations can be adjusted, and warping-based effects can be applied to stylistic elements, such as swirls or waves. To demonstrate the real-world applicability of our approach, we present StyleTune, a mobile app for interactive editing of neural style transfers at multiple levels of control. Our app allows stroke adjustments on a global and local level. It furthermore implements an on-device patch-based upsampling step that enables users to achieve results with high output fidelity and resolutions of more than 20 megapixels. Our approach allows users to art-direct their creations and achieve results that are not possible with current style transfer applications. Y1 - 2022 U6 - https://doi.org/10.1007/s00371-022-02518-x SN - 0178-2789 SN - 1432-2315 VL - 38 IS - 12 SP - 4019 EP - 4033 PB - Springer CY - New York ER - TY - JOUR A1 - Pasewaldt, Sebastian A1 - Semmo, Amir A1 - Trapp, Matthias A1 - Döllner, Jürgen T1 - Multi-perspective 3D panoramas JF - International journal of geographical information science N2 - This article presents multi-perspective 3D panoramas that focus on visualizing 3D geovirtual environments (3D GeoVEs) for navigation and exploration tasks. Their key element, a multi-perspective view (MPV), seamlessly combines what is seen from multiple viewpoints into a single image. This approach facilitates the presentation of information for virtual 3D city and landscape models, particularly by reducing occlusions, increasing screen-space utilization, and providing additional context within a single image. We complement MPVs with cartographic visualization techniques to stylize features according to their semantics and highlight important or prioritized information. When combined, both techniques constitute the core implementation of interactive, multi-perspective 3D panoramas. They offer a large number of effective means for visual communication of 3D spatial information, a high degree of customization with respect to cartographic design, and manifold applications in different domains. We discuss design decisions of 3D panoramas for the exploration of and navigation in 3D GeoVEs. We also discuss a preliminary user study that indicates that 3D panoramas are a promising approach for navigation systems using 3D GeoVEs. KW - multi-perspective visualization KW - panorama KW - focus plus context visualization KW - 3D geovirtual environments KW - cartographic design Y1 - 2014 U6 - https://doi.org/10.1080/13658816.2014.922686 SN - 1365-8816 SN - 1362-3087 VL - 28 IS - 10 SP - 2030 EP - 2051 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Shekhar, Sumit A1 - Reimann, Max A1 - Mayer, Maximilian A1 - Semmo, Amir A1 - Pasewaldt, Sebastian A1 - Döllner, Jürgen A1 - Trapp, Matthias T1 - Interactive photo editing on smartphones via intrinsic decomposition JF - Computer graphics forum : journal of the European Association for Computer Graphics N2 - Intrinsic decomposition refers to the problem of estimating scene characteristics, such as albedo and shading, when one view or multiple views of a scene are provided. The inverse problem setting, where multiple unknowns are solved given a single known pixel-value, is highly under-constrained. When provided with correlating image and depth data, intrinsic scene decomposition can be facilitated using depth-based priors, which nowadays is easy to acquire with high-end smartphones by utilizing their depth sensors. In this work, we present a system for intrinsic decomposition of RGB-D images on smartphones and the algorithmic as well as design choices therein. Unlike state-of-the-art methods that assume only diffuse reflectance, we consider both diffuse and specular pixels. For this purpose, we present a novel specularity extraction algorithm based on a multi-scale intensity decomposition and chroma inpainting. At this, the diffuse component is further decomposed into albedo and shading components. We use an inertial proximal algorithm for non-convex optimization (iPiano) to ensure albedo sparsity. Our GPU-based visual processing is implemented on iOS via the Metal API and enables interactive performance on an iPhone 11 Pro. Further, a qualitative evaluation shows that we are able to obtain high-quality outputs. Furthermore, our proposed approach for specularity removal outperforms state-of-the-art approaches for real-world images, while our albedo and shading layer decomposition is faster than the prior work at a comparable output quality. Manifold applications such as recoloring, retexturing, relighting, appearance editing, and stylization are shown, each using the intrinsic layers obtained with our method and/or the corresponding depth data. KW - CCS Concepts KW - center dot Computing KW - methodologie KW - Image-based rendering KW - Image KW - processing KW - Computational photography Y1 - 2021 U6 - https://doi.org/10.1111/cgf.142650 SN - 0167-7055 SN - 1467-8659 VL - 40 SP - 497 EP - 510 PB - Blackwell CY - Oxford ER -