TY - JOUR A1 - Schulz, Burkhard A1 - Orgzall, Ingo A1 - Diez, Isabel A1 - Dietzel, Birgit A1 - Tauer, Klaus T1 - Template mediated formation of shaped polypyrrole particles N2 - The formation of different micro- and nanostructures during the chemical synthesis of polypyrrole is reviewed shortly based on the conceptions of hard- and soft-templating models. Contrary to other models that emphasize the role of micelles it is found here that during the oxidative polymerization of pyrole using sulfonic acid dopants a crystalline hard template is found in the first steps of the reaction before the addition of the oxidant. This template is formed by a complex consisting of 2,5-bis(pyrrole-2-yl)pyrrolidine and the sulfonic acid anion. The acid catalyzed formation of this specific tripyrrole is discussed. (C) 2009 Elsevier B.V. All rights reserved. Y1 - 2010 U6 - https://doi.org/10.1016/j.colsurfa.2009.11.034 SN - 0927-7757 ER - TY - JOUR A1 - Schulz, Burkhard A1 - Dietzel, Birgit A1 - Orgzall, Ingo A1 - Diez, Isabel A1 - Xu, Chenggang T1 - Aspects of morphology control during the oxidative synthesis of electrically conducting polymers N2 - The formation of micro- and nanostructures during the oxidative polymerization of polypyrrole and polyaniline is investigated using different sulfonic acid dopants. Rod- or tube-like structures are found in polypyrrole as well as in polyaniline without addition of further compounds to the initial reaction mixture of monomer, dopant and oxidant. In these cases, always a crystalline precursor complex composed of a dopand molecule and the pure monomer (aniline) or a trimeric moiety (pyrrole) serves as in-situ template. In most cases the surface of the growing polymer is covered by secondary structures with much smaller sizes so that a hierarchical order of structures at different length scales results. Corresponding model considerations for the polymerization process are outlined. Additionally, unusual structures like platelets, frames, rings, or ribbons are observed in the polypyrrole synthesis in the presence of fluorosurfactants. Y1 - 2009 UR - http://hip.sagepub.com/ U6 - https://doi.org/10.1177/0954008309339933 SN - 0954-0083 ER - TY - JOUR A1 - Orgzall, Ingo A1 - Lorenz, Bernd A1 - Mikat, Jürgen E. R. A1 - Reck, Günter A1 - Knochenhauer, Gerald A1 - Schulz, Burkhard T1 - Phase transition in 1,3,4-oxadiazole crystals under high pressure Y1 - 1998 ER - TY - JOUR A1 - Orgzall, Ingo A1 - Lorenz, Bernd A1 - Mikat, Jürgen E. R. A1 - Reck, Günter A1 - Knochenhauer, Gerald A1 - Schulz, Burkhard T1 - Phase transition in 1,3,4-oxadiazole crystals under high pressure N2 - Crystalline 2,5-di(4-nitrophenyl)-1,3,4-oxadiazole (DNO) has been investigated at pressures up to 5 GPa using Raman and optical spectroscopy as well as energy dispersive X-ray techniques. At ambient pressure DNO shows an orthorhombic unit cell (a = 0.5448 nm, b = 1.2758 nm, c = 1.9720 nm, density 1.513 g cm-3) with an appropriate space group Pbcn. From Raman spectroscopic investigations three phase transitions have been detected at 0.88, 1.28, and 2.2 GPa, respectively. These transitions have also been confirmed by absorption spectroscopy and X-ray measurements. Molecular modeling simulations have considerably contributed to the interpretation of the X-ray diffractograms. In general, the nearly flat structure of the oxadiazole molecule is preserved during the transitions. All subsequent structures are characterized by a stack-like arrangement of the DNO molecules. Only the mutual position of these molecular stacks changes due to the transformations so that this process may be described as a topotactical reaction. Phases II and III show a monoclinic symmetry with space group P21/c with cell parameters a = 1.990 nm, b = 0.500 nm, c = 1.240 nm, ß = 91.7°, density 1.681 g cm-3 (phase II, determined at 1. 1 GPa) and a = 1.890 nm, b = 0.510 nm, C = 1.242 nm, ß = 89.0°, density 1.733 g cm-3 (phase 111, determined at 2.0 GPa), respectively. The high-pressure phase IV stable at least up to 5 GPa shows again an orthorhombic structure with space group Pccn with corresponding cell parameters at 2.9 GPa: a = 0.465 nm, b = 1.920 nm, c = 1.230 nm and density 1.857 g cm-3 . For the first phase a blue pressure shift of the onset of absorption by about 0.032 eV GPa has been observed that may be explained by pressure influences on the electronic conjugation of the molecule. In the intermediate and high-pressure phases II-IV the onset of absorption shifts to increased wavelengths due to larger intermolecular interactions and enhanced excitation delocalization with decreasing intermolecular spacing. Y1 - 1999 ER - TY - JOUR A1 - Orgzall, Ingo A1 - Lorenz, Bernd A1 - Mikat, Jürgen E. R. A1 - Dietel, Reinhard A1 - Knochenhauer, Gerald A1 - Schulz, Burkhard T1 - Raman and IR spectroscopic investigation of aromatic 1,3,4-oxadiazole polymers and oligomers N2 - The molecular structure of poly(p-phenylene-1,3,4-oxadiazole) (POD) is investigated using i.r. and Raman spectroscopy. Both methods reveal characteristic differences for the a- and b-POD forms that are most obvious in the spectral region between 1500 and 1650 cm-1. The spectra for dimer and tetramer compounds already show the same features as found for longer chains. Based on molecular modelling calculations these differences are assigned to cis and trans conformations of the main chain segments. High pressure measurements show a linear shift of the Raman lines and support the result of the thermodynamic stability of the trans conformation. Y1 - 1997 ER - TY - JOUR A1 - Orgzall, Ingo A1 - Franco, Olga A1 - Schulz, Burkhard T1 - High pressure structural investigations of 2,5-di(4-pyridyl)-1,3,4-oxadiazole - importance of strain studies for the description of intermolecular interactions N2 - Results of a high pressure x-ray study of 2,5-di(4-pyridyl)-1,3,4-oxadiazole up to 2.5 GPa are presented and discussed. Parameters for the Murnaghan equation of state are derived. The bulk modulus amounts to K-0 = 4.6 +/- 0.3 GPa and its pressure derivative to K-0' = 7.4 +/- 0.6. These values are comparable to values of other diphenyl-1,3,4- oxadiazoles. The anisotropy of the compression is analysed using the strain tensor and discussed based on the anisotropy of the intermolecular interactions Y1 - 2006 UR - http://iopscience.iop.org/0953-8984 U6 - https://doi.org/10.1088/0953-8984/18/23/001 ER - TY - JOUR A1 - Orgzall, Ingo A1 - Franco, Olga A1 - Reck, Guenter A1 - Schulz, Burkhard T1 - High-pressure studies on fluorine substituted 2,5-di(phenyl)-1,3,4-oxadiazoles N2 - Results are presented from structural and high-pressure investigations on four differently but symmetrically fluorine substituted 2,5di(phenyl)-1,3,4-oxadiazoles. The substitution pattern includes the para-, meta-, or ortho- substitution and the fully fluorinated 2,5-bis(pentafluorophenyl)-1,3,4-oxadiazole. The crystal structure depends on the molecular structure and results in a different high-pressure behavior. Parameters for the Murnaghan equation of state (EOS) are determined for every compound and the anisotropic pressure response of the crystal lattice is discussed. Although the EOS parameters, bulk modulus K. and its pressure derivative K'(o) are of the same order of magnitude for all four compounds, the anisotropy of strain is noticeably different. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0022-2860 ER - TY - JOUR A1 - Mikat, Jürgen E. R. A1 - Franco, Olga A1 - Regenstein, Wolfgang A1 - Reck, Günter A1 - Knochenhauer, Gerald A1 - Schulz, Burkhard A1 - Orgzall, Ingo T1 - 1,3,4-oxadiazole crystals under high pressure-phase transitions and properties Y1 - 2000 ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Dietzel, Birgit A1 - Schulz, Burkhard A1 - Reck, Guenter A1 - Hoffmann, Angelika A1 - Orgzall, Ingo A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Combined structural and fluorescence studies of methyl-substituted 2,5-diphenyl-1,3,4-oxadiazoles - Relation between electronic properties and packing motifs JF - Journal of molecular structure N2 - Prerequisite for the rational design of functional organic materials with tailor-made electronic properties is the knowledge of the structure-property relationship for the specific class of molecules under consideration. This encouraged us to systematically study the influence of the molecular structure and substitution pattern of aromatically substituted 1,3,4-oxadiazoles on the electronic properties and packing motifs of these molecules and on the interplay of these factors. For this purpose, seven diphenyl-oxadiazoles equipped with methyl substituents in the ortho- and meta-position(s) were synthesized and characterized. Absorption and fluorescence spectra in solution served here as tools to monitor substitution-induced changes in the electronic properties of the individual molecules whereas X-ray and optical measurements in the solid state provided information on the interplay of electronic and packing effects. In solution, the spectral position of the absorption maximum, the size of Stokes shift, and the fluorescence quantum yield are considerably affected by ortho-substitution in three or four ortho-positions. This results in blue shifted absorption bands, increased Stokes shifts, and reduced fluorescence quantum yields whereas the spectral position and vibrational structure of the emission bands remain more or less unaffected. In the crystalline state, however, the spectral position and shape of the emission bands display a strong dependence on the molecular structure and/or packing motifs that seem to control the amount of dye-dye-interactions. These observations reveal the limited value of commonly reported absorption and fluorescence measurements in solution for a straightforward comparison of spectroscopic results with single X-ray crystallography. This underlines the importance of solid state spectroscopic studies for a better understanding of the interplay of electronic effects and molecular order. KW - Diphenyl-oxadiazoles KW - X-ray structure KW - Packing motif KW - Optical properties KW - Fluorescence quantum yield Y1 - 2011 U6 - https://doi.org/10.1016/j.molstruc.2010.11.071 SN - 0022-2860 VL - 988 IS - 1-3 SP - 35 EP - 46 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Franco, Olga A1 - Orgzall, Ingo A1 - Regenstein, Wolfgang A1 - Schulz, Burkhard T1 - Structural and spectroscopical study of a 2,5-diphenyl-1,3,4-oxadiazole polymorph under compression N2 - The x-ray pattern and the Raman and luminescence spectra of crystalline 2,5-diphenyl-1,3,4-oxadiazole in one of its polymorphic forms (DPO II) have been investigated under pressure up to 5 GPa. The behaviour of the lattice parameters under compression was determined and it was found that the Murnaghan equation of state provides a good description of the volume-pressure relationship of DPO II. The values for the bulk modulus and its pressure derivative are K-0 = 8.6 GPa and K-0' = 7.2. The analysis of the Raman spectrum under compression clearly shows the pressure- induced shift of the Raman modes to higher frequencies. The mode Gruneisen parameters for the lattice modes were determined. Additionally, it was found that the emission spectrum of DPO II moves to lower energies and that the luminescence intensity decreases when pressure is applied Y1 - 2006 UR - http://iopscience.iop.org/0953-8984 U6 - https://doi.org/10.1088/0953-8984/18/4/029 SN - 0953-8984 ER -