TY - JOUR A1 - Hoffmann, Armin S. A1 - Kane, Avinash S. A1 - Nettels, Daniel A1 - Hertzog, David E. A1 - Baumgärtel, Peter A1 - Lengefeld, Jan A1 - Reichardt, Gerd A1 - Horsley, David A. A1 - Seckler, Robert A1 - Bakajin, Olgica A1 - Schuler, Benjamin T1 - Mapping protein collapse with single molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy Y1 - 2007 UR - http://www.mendeley.com/research/mapping-protein-collapse-with-singlemolecule-fluorescence-and-kinetic- synchrotron-radiation-circular-dichroism-spectroscopy/# SN - 0027-8424 ER - TY - JOUR A1 - Kane, Avinash S. A1 - Hoffmann, Armin S. A1 - Baumgärtel, Peter A1 - Seckler, Robert A1 - Reichardt, Gerd A1 - Horsley, David A. A1 - Schuler, Benjamin A1 - Bakajin, Olgica T1 - Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy N2 - We have developed a microfluidic mixer optimized for rapid measurements of protein folding kinetics using synchrotron radiation circular dichroism (SRCD) spectroscopy. The combination of fabrication in fused silica and synchrotron radiation allows measurements at wavelengths below 220 nm, the typical limit of commercial instrumentation. At these wavelengths, the discrimination between the different types of protein secondary structure increases sharply. The device was optimized for rapid mixing at moderate sample consumption by employing a serpentine channel design, resulting in a dead time of less than 200 ;s. Here, we discuss the design and fabrication of the mixer and quantify the mixing efficiency using wide-field and confocal epi-fluorescence microscopy. We demonstrate the performance of the device in SRCD measurements of the folding kinetics of cytochrome c, a small, fast-folding protein. Our results show that the combination of SRCD with microfluidic mixing opens new possibilities for investigating rapid conformational changes in biological macromolecules that have previously been inaccessible. Y1 - 2008 UR - http://pubs.acs.org/doi/abs/10.1021/ac801764r SN - 0003-2700 ER - TY - JOUR A1 - Nettels, Daniel A1 - Müller-Späth, Sonja A1 - Küster, Frank A1 - Hofmann, Hagen A1 - Haenni, Domminik A1 - Rüegger, Stefan A1 - Reymond, Luc A1 - Hoffmann, Armin S. A1 - Kubelka, Jan A1 - Heinz, Benjamin A1 - Gast, Klaus A1 - Best, Robert B. A1 - Schuler, Benjamin T1 - Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins N2 - We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With singlemolecule FRET, this question can be addressed even under nearnative conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperaturedependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse. Y1 - 2009 UR - http://www.pnas.org/content/106/49/20740.full.pdf+html SN - 0027-8424 ER -