TY - JOUR A1 - Schmidt, Silke Regina A1 - Gerten, Dieter A1 - Hintze, Thomas A1 - Lischeid, Gunnar A1 - Livingstone, David M. A1 - Adrian, Rita T1 - Temporal and spatial scales of water temperature variability as an indicator for mixing in a polymictic lake JF - Inland waters : journal of the International Society of Limnology N2 - We applied coarse spectral analysis to more than 2 decades of daily near-surface water temperature (WT) measurements from Muggelsee, a shallow polymictic lake in Germany, to systematically characterize patterns in WT variability from daily to yearly temporal scales. Comparison of WT with local air temperature indicates that the WT variability patterns are likely attributable to both meteorological forcing and internal lake dynamics. We identified seasonal patterns of WT variability and showed that WT variability increases with increasing Schmidt stability, decreasing Lake number and decreasing ice cover duration, and is higher near the shore than in open water. We introduced the slope of WT spectra as an indicator for the degree of lake mixing to help explain the identified temporal and spatial scales of WT variability. The explanatory power of this indicator in other lakes with different mixing regimes remains to be established. KW - Lake number KW - polymictic lakes KW - Schmidt stability KW - seasonality KW - spectral analysis KW - variability Y1 - 2018 U6 - https://doi.org/10.1080/20442041.2018.1429067 SN - 2044-2041 SN - 2044-205X VL - 8 IS - 1 SP - 82 EP - 95 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - BOOK A1 - Zendler, Andreas A1 - Schmidt, Silke A1 - Krüger, Klaus T1 - Komponentenorientierte Softwareentwicklungstechniken T3 - Preprint / Universität Potsdam, Institut für Informatik Y1 - 2003 SN - 0946-7580 VL - 2003, 1 PB - Univ. CY - Potsdam ER - TY - JOUR A1 - Schmidt, Silke Regina A1 - Lischeid, Gunnar A1 - Hintze, Thomas A1 - Adrian, Rita T1 - Disentangling limnological processes in the time-frequency domain JF - Limnology and oceanography N2 - State variables in lake ecosystems are subject to processes that act on different time scales. The relative importance of each of these processes changes over time, e.g., due to varying constraints of physical, biological, and biogeochemical processes. Correspondingly, continuous automatic measurements at high temporal resolution often reveal intriguing patterns that can rarely be directly ascribed to single processes. In light of the rather complex interplay of such processes, disentangling them requires more powerful methods than researchers have applied up to this point. For this reason, we tested the potential of wavelet coherence, based on the assumption that different processes result in correlations between different variables, on different time scales and during different time windows across the seasons. The approach was tested on a set of multivariate hourly data measured between the onset of an ice cover and a cyanobacterial summer bloom in the year 2009 in the Muggelsee, a polymictic eutrophic lake. We found that processes such as photosynthesis and respiration, the growth and decay of phytoplankton biomass, dynamics in the CO2-carbonate system, wind-induced resuspension of particles, and vertical mixing all occasionally served as dominant drivers of the variability in our data. We therefore conclude that high-resolution data and a method capable of analyzing time series in both the time and the frequency domain can help to enhance our understanding of the time scales and processes responsible for the high variability in driver variables and response variables, which in turn can lay the ground for mechanistic analyses. Y1 - 2018 U6 - https://doi.org/10.1002/lno.11049 SN - 0024-3590 SN - 1939-5590 VL - 64 IS - 2 SP - 423 EP - 440 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Rusak, James A. A1 - Tanentzap, Andrew J. A1 - Klug, Jennifer L. A1 - Rose, Kevin C. A1 - Hendricks, Susan P. A1 - Jennings, Eleanor A1 - Laas, Alo A1 - Pierson, Donald C. A1 - Ryder, Elizabeth A1 - Smyth, Robyn L. A1 - White, D. S. A1 - Winslow, Luke A. A1 - Adrian, Rita A1 - Arvola, Lauri A1 - de Eyto, Elvira A1 - Feuchtmayr, Heidrun A1 - Honti, Mark A1 - Istvanovics, Vera A1 - Jones, Ian D. A1 - McBride, Chris G. A1 - Schmidt, Silke Regina A1 - Seekell, David A1 - Staehr, Peter A. A1 - Guangwei, Zhu T1 - Wind and trophic status explain within and among-lake variability of algal biomass JF - Limnology and oceanography letters / ASLO, Association for the Sciences of Limnology and Oceanography N2 - Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within-lake variation in biomass using high-frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high-frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within-lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high-frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides. Y1 - 2018 U6 - https://doi.org/10.1002/lol2.10093 SN - 2378-2242 VL - 3 IS - 6 SP - 409 EP - 418 PB - Wiley CY - Hoboken ER - TY - THES A1 - Schmidt, Silke Regina T1 - Analyzing lakes in the time frequency domain T1 - Analyse von Seen in der Zeit-Frequenz-Domäne N2 - The central aim of this thesis is to demonstrate the benefits of innovative frequency-based methods to better explain the variability observed in lake ecosystems. Freshwater ecosystems may be the most threatened part of the hydrosphere. Lake ecosystems are particularly sensitive to changes in climate and land use because they integrate disturbances across their entire catchment. This makes understanding the dynamics of lake ecosystems an intriguing and important research priority. This thesis adds new findings to the baseline knowledge regarding variability in lake ecosystems. It provides a literature-based, data-driven and methodological framework for the investigation of variability and patterns in environmental parameters in the time frequency domain. Observational data often show considerable variability in the environmental parameters of lake ecosystems. This variability is mostly driven by a plethora of periodic and stochastic processes inside and outside the ecosystems. These run in parallel and may operate at vastly different time scales, ranging from seconds to decades. In measured data, all of these signals are superimposed, and dominant processes may obscure the signals of other processes, particularly when analyzing mean values over long time scales. Dominant signals are often caused by phenomena at long time scales like seasonal cycles, and most of these are well understood in the limnological literature. The variability injected by biological, chemical and physical processes operating at smaller time scales is less well understood. However, variability affects the state and health of lake ecosystems at all time scales. Besides measuring time series at sufficiently high temporal resolution, the investigation of the full spectrum of variability requires innovative methods of analysis. Analyzing observational data in the time frequency domain allows to identify variability at different time scales and facilitates their attribution to specific processes. The merit of this approach is subsequently demonstrated in three case studies. The first study uses a conceptual analysis to demonstrate the importance of time scales for the detection of ecosystem responses to climate change. These responses often occur during critical time windows in the year, may exhibit a time lag and can be driven by the exceedance of thresholds in their drivers. This can only be detected if the temporal resolution of the data is high enough. The second study applies Fast Fourier Transform spectral analysis to two decades of daily water temperature measurements to show how temporal and spatial scales of water temperature variability can serve as an indicator for mixing in a shallow, polymictic lake. The final study uses wavelet coherence as a diagnostic tool for limnology on a multivariate high-frequency data set recorded between the onset of ice cover and a cyanobacteria summer bloom in the year 2009 in a polymictic lake. Synchronicities among limnological and meteorological time series in narrow frequency bands were used to identify and disentangle prevailing limnological processes. Beyond the novel empirical findings reported in the three case studies, this thesis aims to more generally be of interest to researchers dealing with now increasingly available time series data at high temporal resolution. A set of innovative methods to attribute patterns to processes, their drivers and constraints is provided to help make more efficient use of this kind of data. N2 - See-Ökosysteme sind eine der bedrohtesten Ressourcen der Hydrosphäre. Sie reagieren besonders sensibel auf Veränderungen des Klimas und auf Einflüsse durch Landnutzung, da verschiedene Prozesse im gesamten Einzugsgebiet auf sie einwirken. Daher ist es von besonderer Dringlichkeit, die verschiedenen Prozess-Dynamiken in See-Ökosystemen besser zu verstehen. Die hier vorliegende Doktorarbeit hat zum Ziel, das bestehende Wissen bezüglich der verschiedenen einwirkenden Prozesse in See-Ökosystemen zu erweitern. Die Arbeit stellt ein Forschungsdesign zur Diskussion, das eine Literatur-basierte und auf empirischen Erhebungen beruhende Analyse von Variabilität und Mustern in großen Datensätzen verschiedener Umweltparameter im Zeit-Frequenz-Raum ermöglicht. Umweltparameter sind häufig charakterisiert durch eine hohe zeitliche Dynamik. Diese Variabilität steht im Zentrum dieser Arbeit. Sie wird durch eine Fülle an periodischen und stochastischen Prozessen innerhalb und außerhalb des Ökosystems getrieben. Diese Prozesse können gleichzeitig und auf sehr unterschiedlichen Zeitskalen, von Sekunden bis hin zu Dekaden, ablaufen. In Messdaten überlagern sich alle diese Signale, und dominante Prozesse können die Signale anderer Prozesse verschleiern, insbesondere wenn Mittelwerte über längere Zeiträume analysiert werden. Dominante Signale werden oft durch Prozesse auf längeren Zeitskalen verursacht, wie z. B. saisonale Zyklen. Diese sind im Allgemeinen in der limnologischen Literatur gut dokumentiert. See-Ökosysteme werden allerdings von Prozessen auf allen Zeitskalen beeinflusst. Insbesondere biologische, chemische und physikalische Prozesse operieren in kürzeren Zeitrahmen. Die Variabilität, die über solche Prozesse in See-Ökosysteme eingebracht wird, ist bisher weit weniger gut erforscht. Neben der Notwendigkeit, Umweltparameter in hoher zeitlicher Auflösung zu messen, erfordert die Untersuchung der kompletten Bandbreite an Variabilität innovative Analysemethoden. Die Berücksichtigung der Zeit-Frequenz-Domäne kann dabei helfen, Dynamiken auf verschiedenen Zeitskalen zu identifizieren und daraus bestimmte Prozesse abzuleiten. Diese Arbeit zeigt die Vorzüge dieser Herangehensweise anhand von drei Fallstudien auf. Die erste Studie zeigt die Bedeutung von Zeitskalen für die Erfassung von Ökosystem-Reaktionen auf klimatische Veränderungen. Diese ereignen sich oft während kritischer Zeitfenster im Jahresverlauf und können durch die Überschreitung von Schwellenwerten in den treibenden Variablen, unter Umständen zeitlich verzögert, verursacht sein. Solche Zusammenhänge können nur erfasst werden, wenn die zeitliche Auflösung der Daten hoch genug ist. In der zweiten Studie wird die Spektralanalyse, basierend auf der Fast Fourier Transformation, auf einen Datensatz täglicher Messungen der Wassertemperatur über zwanzig Jahre hinweg angewendet. Es wird gezeigt, wie zeitliche und räumliche Skalen der Variabilität der Wassertemperatur als Indikator für Mischprozesse in einem polymiktischen See dienen können. In der dritten Studie wird die Wavelet Coherence als Diagnose-Werkzeug für einen multivariaten, hochfrequenten Datensatz genutzt. Dieser wurde zwischen dem Einsetzen einer Eisbedeckung und einer Sommerblüte von Cyanobakteriern in einem polymiktischen See im Jahr 2009 erhoben. Synchronizitäten zwischen limnologischen und meteorologischen Zeitreihen in schmalen Frequenz-Bändern wurden genutzt, um vorherrschende limnologische Prozesse zu identifizieren und analytisch zu trennen. Neben den neuen empirischen Erkenntnissen, die in den drei Fallstudien präsentiert werden, zielt diese Doktorarbeit darauf ab, Forscher*innen, Behörden und politischen Entscheidungsträger*innen eine Grundlage zu liefern, die hohe zeitliche Auflösung der heute vielfach verfügbaren Monitoring-Datensätze effizienter zu nutzen. Innovative Methoden sollen dabei helfen, Muster in den Daten Prozessen zuzuordnen und die entsprechenden Treiber und Limitationen zu identifizieren. KW - variability KW - time scale KW - wavelet KW - coherence KW - spectral analysis KW - time series analysis KW - polymictic lakes KW - process identification KW - Variabilität KW - Zeitskala KW - Spektralanalyse KW - Zeitreihenanalyse KW - polymiktische Seen KW - Prozessidentifikation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406955 ER - TY - JOUR A1 - Giling, Darren P. A1 - Staehr, Peter A. A1 - Grossart, Hans-Peter A1 - Andersen, Mikkel Rene A1 - Boehrer, Bertram A1 - Escot, Carmelo A1 - Evrendilek, Fatih A1 - Gomez-Gener, Lluis A1 - Honti, Mark A1 - Jones, Ian D. A1 - Karakaya, Nusret A1 - Laas, Alo A1 - Moreno-Ostos, Enrique A1 - Rinke, Karsten A1 - Scharfenberger, Ulrike A1 - Schmidt, Silke R. A1 - Weber, Michael A1 - Woolway, R. Iestyn A1 - Zwart, Jacob A. A1 - Obrador, Biel T1 - Delving deeper: Metabolic processes in the metalimnion of stratified lakes JF - Limnology and oceanography N2 - Many lakes exhibit seasonal stratification, during which they develop strong thermal and chemical gradients. An expansion of depth-integrated monitoring programs has provided insight into the importance of organic carbon processing that occurs below the upper mixed layer. However, the chemical and physical drivers of metabolism and metabolic coupling remain unresolved, especially in the metalimnion. In this depth zone, sharp gradients in key resources such as light and temperature co-occur with dynamic physical conditions that influence metabolic processes directly and simultaneously hamper the accurate tracing of biological activity. We evaluated the drivers of metalimnetic metabolism and its associated uncertainty across 10 stratified lakes in Europe and North America. We hypothesized that the metalimnion would contribute highly to whole-lake functioning in clear oligotrophic lakes, and that metabolic rates would be highly variable in unstable polymictic lakes. Depth-integrated rates of gross primary production (GPP) and ecosystem respiration (ER) were modelled from diel dissolved oxygen curves using a Bayesian approach. Metabolic estimates were more uncertain below the epilimnion, but uncertainty was not consistently related to lake morphology or mixing regime. Metalimnetic rates exhibited high day-to-day variability in all trophic states, with the metalimnetic contribution to daily whole-lake GPP and ER ranging from 0% to 87% and < 1% to 92%, respectively. Nonetheless, the metalimnion of low-nutrient lakes contributed strongly to whole-lake metabolism on average, driven by a collinear combination of highlight, low surface-water phosphorous concentration and high metalimnetic volume. Consequently, a single-sensor approach does not necessarily reflect whole-ecosystem carbon dynamics in stratified lakes. Y1 - 2017 U6 - https://doi.org/10.1002/lno.10504 SN - 0024-3590 SN - 1939-5590 VL - 62 SP - 1288 EP - 1306 PB - Wiley CY - Hoboken ER -