TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Schmid, Thomas A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol JF - Scientific Reports N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - enhanced raman-scattering KW - charge-transfer KW - metal KW - nanoparticles KW - catalysis KW - AU KW - 4-nitrobenzenethiol KW - aminothiophenol KW - photocatalysis KW - wavelength Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER - TY - GEN A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Schmid, Thomas A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 698 KW - enhanced raman-scattering KW - charge-transfer KW - metal KW - nanoparticles KW - catalysis KW - AU KW - 4-nitrobenzenethiol KW - aminothiophenol KW - photocatalysis KW - wavelength Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427197 SN - 1866-8372 IS - 698 ER - TY - JOUR A1 - Höfs, Soraya A1 - Huelague, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, Jorg A. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf J. T1 - Electrochemical immunomagnetic Ochratoxin A sensing BT - steps forward in the application of 3,3’,5,5’-Tetramethylbenzidine in amperometric assays JF - ChemElectroChem N2 - Electrochemical methods offer great promise in meeting the demand for user-friendly on-site devices for monitoring important parameters. The food industry often runs own lab procedures, for example, for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with smart technologies. Enzyme-linked immunosorbent assays, with photometric detection of 3,3',5,5'-tetramethylbenzidine (TMB), form a good basis for sensitive detection. To provide a straightforward approach for the miniaturization of the detection step, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. A stable electrode response to TMB could be achieved at pH 1 on gold electrodes. We created a smartphone-based, electrochemical, immunomagnetic assay for the detection of ochratoxin A in real samples, providing a solid basis for sensing of further analytes. KW - amperometry KW - cyclic voltammetry KW - immunoassays KW - screen-printed electrodes KW - 3,3′,5,5′-tetramethylbenzidine Y1 - 2021 U6 - https://doi.org/10.1002/celc.202100446 SN - 2196-0216 VL - 8 IS - 13 SP - 2597 EP - 2606 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Ostermann, Markus A1 - Bald, Ilko A1 - Schmid, Thomas T1 - Challenges in the quantification of nutrients in soils using laser-induced breakdown spectroscopy BT - a case study with calcium JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - The quantification of the elemental content in soils with laser-induced breakdown spectroscopy (LIBS) is challenging because of matrix effects strongly influencing the plasma formation and LIBS signal. Furthermore, soil heterogeneity at the micrometre scale can affect the accuracy of analytical results. In this paper, the impact of univariate and multivariate data evaluation approaches on the quantification of nutrients in soil is discussed. Exemplarily, results for calcium are shown, which reflect trends also observed for other elements like magnesium, silicon and iron. For the calibration models, 16 certified reference soils were used. With univariate and multivariate approaches, the calcium mass fractions in 60 soils from different testing grounds in Germany were calculated. The latter approach consisted of a principal component analysis (PCA) of adequately pre-treated data for classification and identification of outliers, followed by partial least squares regression (PLSR) for quantification. For validation, the soils were also characterised with inductively coupled plasma optical emission spectroscopy (ICP OES) and X-ray fluorescence (XRF) analysis. Deviations between the LIBS quantification results and the reference analytical results are discussed. KW - Laser-induced breakdown spectroscopy (LIBS) KW - Soil KW - Multivariate data analysis KW - Principal component analysis (PCA) KW - Partial least squares regression (PLSR) Y1 - 2018 U6 - https://doi.org/10.1016/j.sab.2018.05.003 SN - 0584-8547 VL - 146 SP - 115 EP - 121 PB - Elsevier CY - Oxford ER -