TY - JOUR A1 - Oliver, Sandra N. A1 - Lunn, John Edward A1 - Urbanczyk-Wochniak, Ewa A1 - Lytovchenko, Anna A1 - van Dongen, Joost T. A1 - Faix, Benjamin A1 - Schmälzlin, Elmar A1 - Fernie, Alisdair R. A1 - Schmäelzlin, E. A1 - Geigenberger, Peter T1 - Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase N2 - The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo. Y1 - 2008 UR - http://www.plantphysiol.org/content/148/3/1640.full U6 - https://doi.org/10.1104/pp.108.126516 ER - TY - GEN A1 - Eich, Susanne A1 - Schmälzlin, Elmar A1 - Löhmannsröben, Hans-Gerd T1 - Distributed fiber optical sensing of oxygen with optical time domain reflectometry T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1085 KW - OTDR KW - optical sensing KW - molecular oxygen KW - triangular-[4] phenylene Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476659 SN - 1866-8372 IS - 1085 ER - TY - JOUR A1 - Eich, Susanne A1 - Schmälzlin, Elmar A1 - Löhmannsröben, Hans-Gerd T1 - Distributed fiber optical sensing of Oxygen with optical time domain reflectometry JF - Sensors N2 - In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. KW - OTDR KW - optical sensing KW - molecular oxygen KW - triangular-[4] phenylene Y1 - 2013 U6 - https://doi.org/10.3390/s130607170 SN - 1424-8220 VL - 13 IS - 6 SP - 7170 EP - 7183 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ast, Cindy A1 - Schmälzlin, Elmar A1 - Löhmannsröben, Hans-Gerd A1 - van Dongen, Joost T. T1 - Optical oxygen micro- and nanosensors for plant applications JF - Sensors N2 - Pioneered by Clark's microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters. KW - oxygen sensor KW - biosensors KW - microsensors KW - nanosensors KW - endogenous sensor proteins KW - dual-frequency phase-modulation KW - phosphorescence quenching KW - plant science Y1 - 2012 U6 - https://doi.org/10.3390/s120607015 SN - 1424-8220 VL - 12 IS - 6 SP - 7015 EP - 7032 PB - MDPI CY - Basel ER - TY - JOUR A1 - Oesterhelt, Christine A1 - Schmälzlin, Elmar A1 - Schmitt, Jürgen M. A1 - Lokstein, Heiko T1 - Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria N2 - Extremophilic organisms are gaining increasing interest because of their unique metabolic capacities and great biotechnological potential. The unicellular acidophilic and mesothermophilic red alga Galdieria sulphuraria (074G) can grow autotrophically in light as well as heterotrophically in the dark. In this paper, the effects of externally added glucose on primary and secondary photosynthetic reactions are assessed to elucidate mixotrophic capacities of the alga. Photosynthetic O-2 evolution was quantified in an open system with a constant Supply Of CO2 to avoid rapid volatilization of dissolved inorganic carbon at low pH levels. In the presence of glucose, O-2 evolution was repressed even in illuminated cells. Ratios of variable to maximum chlorophyll fluorescence (F-v/F-m) and 77 Kfluorescence spectra indicated a reduced photochemical efficiency of photosystem II. The results were corroborated by strongly reduced levels of the photosystem 11 reaction centre protein D1. The downregulation of primary photosynthetic reactions was accompanied by reduced levels of the Calvin Cycle enzyme ribu lose-1,5-bisphosphate carboxylaselfoxygenase (Rubisco). Both effects depended on functional sugar uptake and are thus initiated by intracellular rather than extracellular glucose. Following glucose depletion, photosynthetic O-2 evolution of illuminated cells commenced after 15 h and Rubisco levels again reached the levels of autotrophic cells. It is concluded that true mixotrophy, involving electron transport across both photosystems, does not occur in G. sulphuraria 074G, and that heterotrophic growth is favoured over autotrophic growth if sufficient organic carbon is available. Y1 - 2007 UR - http://onlinelibrary.wiley.com/doi/10.1111/tpj.2007.51.issue-3/issuetoc U6 - https://doi.org/10.1111/j.1365-313X.2007.03159.x ER -